JavaShuo
栏目
标签
【Paper Reading】AdderNet: DoWe Really Need Multiplications in Deep Learning?
时间 2020-07-25
标签
Paper Reading
addernet
dowe
really
multiplications
deep
learning
繁體版
原文
原文链接
2020 CVPR 北大 华为 paper:https://arxiv.org/abs/1912.13200 code:https://github.com/huawei-noah/AdderNetgit 摘要 与廉价的加法运算相比,乘法运算具备更高的计算复杂度。在深度神经网络中被普遍使用的卷积使用互相关来度量输入特征与卷积滤波器之间的类似性,这涉及到浮点值之间的大量乘法。本文提出的AdderNe
>>阅读原文<<
相关文章
1.
【Paper Reading】AdderNet: DoWe Really Need Multiplications in Deep Learning?
2.
加法神经网络--AdderNet: DoWe Really Need Multiplications in Deep Learning?
3.
Addernet学习笔记 --- AdderNet: Do We Really Need Multiplications in Deep Learning?
4.
论文阅读——AdderNet: Do We Really Need Multiplications in Deep Learning?
5.
论文笔记:AdderNet: Do We Really Need Multiplications in Deep Learning?
6.
AdderNet: Do we really need multiplications in deep learning——准研究生论文周报
7.
论文阅读:Do We Really Need Multiplications in Deep Learning?
8.
论文笔记:Do We Really Need Multiplications in Deep Learning?
9.
【Paper Reading】【CVPR2020】加法网络:AdderNet
10.
#Paper reading#DeepInf: Social Influence Prediction with Deep Learning
更多相关文章...
•
SQL IN 操作符
-
SQL 教程
•
Swift for-in 循环
-
Swift 教程
•
Java Agent入门实战(一)-Instrumentation介绍与使用
•
Java Agent入门实战(三)-JVM Attach原理与使用
相关标签/搜索
Deep Learning
really
addernet
reading
learning
deep
paper
Meta-learning
Learning Perl
Deep Hash
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正确理解商业智能 BI 的价值所在
2.
解决梯度消失梯度爆炸强力推荐的一个算法-----LSTM(长短时记忆神经网络)
3.
解决梯度消失梯度爆炸强力推荐的一个算法-----GRU(门控循环神经⽹络)
4.
HDU4565
5.
算概率投硬币
6.
密码算法特性
7.
DICOMRT-DiTools:clouddicom源码解析(1)
8.
HDU-6128
9.
计算机网络知识点详解(持续更新...)
10.
hods2896(AC自动机)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
【Paper Reading】AdderNet: DoWe Really Need Multiplications in Deep Learning?
2.
加法神经网络--AdderNet: DoWe Really Need Multiplications in Deep Learning?
3.
Addernet学习笔记 --- AdderNet: Do We Really Need Multiplications in Deep Learning?
4.
论文阅读——AdderNet: Do We Really Need Multiplications in Deep Learning?
5.
论文笔记:AdderNet: Do We Really Need Multiplications in Deep Learning?
6.
AdderNet: Do we really need multiplications in deep learning——准研究生论文周报
7.
论文阅读:Do We Really Need Multiplications in Deep Learning?
8.
论文笔记:Do We Really Need Multiplications in Deep Learning?
9.
【Paper Reading】【CVPR2020】加法网络:AdderNet
10.
#Paper reading#DeepInf: Social Influence Prediction with Deep Learning
>>更多相关文章<<