Deep Learning 学习总结(一)—— Caffe Ubuntu14.04 CUDA 6.5 配置

Caffe (Convolution Architecture For Feature Extraction)做为深度学习CNN一个很是火的框架,对于初学者来讲,搭建Linux下的Caffe平台是学习深度学习关键的一步,其过程也比较繁琐,回想起当初折腾的那几天,遂总结一下Ubuntu14.04的配置过程,方便之后新手能在此少走弯路。python

1. 安装build-essentialslinux

安装开发所须要的一些基本包git

   1: sudo apt-get install build-essential

2. 安装NVIDIA驱动github

输入下列命令添加驱动源shell

   1: sudo add-apt-repository ppa:xorg-edgers/ppa
   2: sudo apt-get update

安装340版本驱动(具体版本取决于电脑显卡的型号,详细可到NVIDIA官网查看)ubuntu

   1: sudo apt-get install nvidia-340

安装完成后,继续安装下列包bash

   1: sudo apt-get install nvidia-340-uvm

安装驱动完毕,reboot.app

3. 安装CUDA 6.5框架

CUDA的Deb包安装较为简单,按照官网流程,事先安装必要的库学习

   1: sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

3.1 安装CUDA

而后经过如下命令获取Ubuntu 14.04 CUDA相关的repository package

   1: $ sudo dpkg -i cuda-repo-ubuntu1404_6.5-14_amd64.deb 
   2: $ sudo apt-get update

而后开始安装CUDA Toolkit

   1: $ sudo apt-get install cuda

此时须要下载较长时间,网速较慢的中途能够出去吃个饭~

3.2 环境配置

CUDA安装完毕后,须要对.bashrc加入一下命令来配置环境

   
   
   
   
   1: export CUDA_HOME=/usr/local/cuda-6.5 
   2: export LD_LIBRARY_PATH=${CUDA_HOME}/lib64 
 
   
   
   
   
   1: PATH=${CUDA_HOME}/bin:${PATH} 
   2: export PATH

3.3 安装CUDA SAMPLE

经过复制SDK samples 到主目录下,完成整个编译过程

   1: $ cuda-install-samples-6.5.sh  ~ 
   2: $ cd ~/NVIDIA_CUDA-6.5_Samples 
   3: $ make

若是以上过程都成功后,能够经过运行bin/x86_64/linux/release 下的deviceQuery来验证一下。若是出现如下信息,则说明驱动以及显卡安装成功


   
   
   
   
   1: ./deviceQuery Starting...
   2:  
   3:  CUDA Device Query (Runtime API) version (CUDART static linking)
   4:  
   5: Detected 1 CUDA Capable device(s)
   6:  
   7: Device 0: "GeForce GTX 670"
   8:   CUDA Driver Version / Runtime Version          6.5 / 6.5
   9:   CUDA Capability Major/Minor version number:    3.0
  10:   Total amount of global memory:                 4095 MBytes (4294246400 bytes)
  11:   ( 7) Multiprocessors, (192) CUDA Cores/MP:     1344 CUDA Cores
  12:   GPU Clock rate:                                1098 MHz (1.10 GHz)
  13:   Memory Clock rate:                             3105 Mhz
  14:   Memory Bus Width:                              256-bit
  15:   L2 Cache Size:                                 524288 bytes
  16:   Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  17:   Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  18:   Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  19:   Total amount of constant memory:               65536 bytes
  20:   Total amount of shared memory per block:       49152 bytes
  21:   Total number of registers available per block: 65536
  22:   Warp size:                                     32
  23:   Maximum number of threads per multiprocessor:  2048
  24:   Maximum number of threads per block:           1024
  25:   Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  26:   Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  27:   Maximum memory pitch:                          2147483647 bytes
  28:   Texture alignment:                             512 bytes
  29:   Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  30:   Run time limit on kernels:                     Yes
  31:   Integrated GPU sharing Host Memory:            No
  32:   Support host page-locked memory mapping:       Yes
  33:   Alignment requirement for Surfaces:            Yes
  34:   Device has ECC support:                        Disabled
  35:   Device supports Unified Addressing (UVA):      Yes
  36:   Device PCI Bus ID / PCI location ID:           1 / 0
  37:   Compute Mode:
  38:      < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
  39:  
  40: deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = GeForce GTX 670
  41: Result = PASS

4. 安装BLAS

Caffe的BLAS能够有三种选择,分别为atlas、mkl以及openBLAS。对于mkl能够到intel官网下载,解压完成后又一个install_GUI.sh文件,执行该文件会出现图形安装界面,根听说明一步一步执行便可。

也可对openBLAS源码进行编译,不过须要gcc以及gfortran等相关编译器。我的认为比较便捷的是atlas,在Caffe官网上有相关的介绍,对于Ubuntu,经过如下命令能够下载atlas

   1: sudo apt-get install libatlas-base-dev

5. 安装OpenCV

OpenCV库安装能够经过网上写好的脚本进行下载:https://github.com/jayrambhia/Install-OpenCV

解压文档后,进入Ubuntu/2.4 给全部的shell脚本加上可执行权限

   1: chmod +x *.sh

而后执行 opencv2_4_9.sh 安装最新版本,注意,OpenCV 2.4.9不支持gcc-4.9以上的编译器!!

 

6. 安装其余dependencies

对于Ubuntu 14.04,执行如下命令下载其余相关依赖库文件

   1: sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev
   2: sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler

7. 安装python以及Matlab

首先安装pip和python –dev

   1: sudo apt-get install python-dev python-pip

以及caffe python wrapper所须要的额外包

   1: sudo pip install -r /path/to/caffe/python/requirements.txt

Matlab接口须要额外安装Matlab程序

 

Last shot --- 编译Caffe

完成全部的环境配置,终于能够编译caffe了,经过官网下载caffe源码,进入根目录caffe-master,首先复制一份makefile

   1: cp Makefile.config.example Makefile.config

而后修改里面的内容,主要有:

CPU_ONLY   是否采用cpu模式,不然选择CUDNN(这里的CUDNN须要在NVIDIA-CUDNN下载,还有经过email注册申请才能经过审核)

BLAS:=atlas(也能够是open或者mkl)

DEBUG  若是须要debug模式

MATLAB_DIR 若是须要采用matlab 接口

完成配置后,能够进行编译了

   1: make all -j4
   2: make test
   3: make runtest

最后若是都能正常,证实caffe里面全部的例子程序均可以运行了,放心都跑CIFAR、MNIST以及ImageNet吧~~

相关文章
相关标签/搜索