聊聊缓存淘汰算法-LRU 实现原理

前言

咱们经常使用缓存提高数据查询速度,因为缓存容量有限,当缓存容量到达上限,就须要删除部分数据挪出空间,这样新数据才能够添加进来。缓存数据不能随机删除,通常状况下咱们须要根据某种算法删除缓存数据。经常使用淘汰算法有 LRU,LFU,FIFO,这篇文章咱们聊聊 LRU 算法。java

LRU 简介

LRU 是 Least Recently Used 的缩写,这种算法认为最近使用的数据是热门数据,下一次很大几率将会再次被使用。而最近不多被使用的数据,很大几率下一次再也不用到。当缓存容量的满时候,优先淘汰最近不多使用的数据。node

假设如今缓存内部数据如图所示:算法

image.png

这里咱们将列表第一个节点称为头结点,最后一个节点为尾结点。数据库

当调用缓存获取 key=1 的数据,LRU 算法须要将 1 这个节点移动到头结点,其他节点不变,如图所示。编程

image.png

而后咱们插入一个 key=8 节点,此时缓存容量到达上限,因此加入以前须要先删除数据。因为每次查询都会将数据移动到头结点,未被查询的数据就将会下沉到尾部节点,尾部的数据就能够认为是最少被访问的数据,因此删除尾结点的数据。缓存

image.png

而后咱们直接将数据添加到头结点。数据结构

image.png

这里总结一下 LRU 算法具体步骤:ide

  • 新数据直接插入到列表头部
  • 缓存数据被命中,将数据移动到列表头部
  • 缓存已满的时候,移除列表尾部数据。

LRU 算法实现

上面例子中能够看到,LRU 算法须要添加头节点,删除尾结点。而链表添加节点/删除节点时间复杂度 O(1),很是适合当作存储缓存数据容器。可是不能使用普通的单向链表,单向链表有几点劣势:this

  1. 每次获取任意节点数据,都须要从头结点遍历下去,这就致使获取节点复杂度为 O(N)。
  2. 移动中间节点到头结点,咱们须要知道中间节点前一个节点的信息,单向链表就不得再也不次遍历获取信息。

针对以上问题,能够结合其余数据结构解决。idea

使用散列表存储节点,获取节点的复杂度将会下降为 O(1)。节点移动问题能够在节点中再增长前驱指针,记录上一个节点信息,这样链表就从单向链表变成了双向链表。

综上使用双向链表加散列表结合体,数据结构如图所示:

LRU.png

在双向链表中特地增长两个『哨兵』节点,不用来存储任何数据。使用哨兵节点,增长/删除节点的时候就能够不用考虑边界节点不存在状况,简化编程难度,下降代码复杂度。

LRU 算法实现代码以下,为了简化 key ,val 都认为 int 类型。

public class LRUCache {

    Entry head, tail;
    int capacity;
    int size;
    Map<Integer, Entry> cache;


    public LRUCache(int capacity) {
        this.capacity = capacity;
        // 初始化链表
        initLinkedList();
        size = 0;
        cache = new HashMap<>(capacity + 2);
    }

    /** * 若是节点不存在,返回 -1.若是存在,将节点移动到头结点,并返回节点的数据。 * * @param key * @return */
    public int get(int key) {
        Entry node = cache.get(key);
        if (node == null) {
            return -1;
        }
        // 存在移动节点
        moveToHead(node);
        return node.value;
    }

    /** * 将节点加入到头结点,若是容量已满,将会删除尾结点 * * @param key * @param value */
    public void put(int key, int value) {
        Entry node = cache.get(key);
        if (node != null) {
            node.value = value;
            moveToHead(node);
            return;
        }
        // 不存在。先加进去,再移除尾结点
        // 此时容量已满 删除尾结点
        if (size == capacity) {
            Entry lastNode = tail.pre;
            deleteNode(lastNode);
            cache.remove(lastNode.key);
            size--;
        }
        // 加入头结点

        Entry newNode = new Entry();
        newNode.key = key;
        newNode.value = value;
        addNode(newNode);
        cache.put(key, newNode);
        size++;

    }

    private void moveToHead(Entry node) {
        // 首先删除原来节点的关系
        deleteNode(node);
        addNode(node);
    }

    private void addNode(Entry node) {
        head.next.pre = node;
        node.next = head.next;

        node.pre = head;
        head.next = node;
    }

    private void deleteNode(Entry node) {
        node.pre.next = node.next;
        node.next.pre = node.pre;
    }


    public static class Entry {
        public Entry pre;
        public Entry next;
        public int key;
        public int value;

        public Entry(int key, int value) {
            this.key = key;
            this.value = value;
        }

        public Entry() {
        }
    }

    private void initLinkedList() {
        head = new Entry();
        tail = new Entry();

        head.next = tail;
        tail.pre = head;

    }

    public static void main(String[] args) {

        LRUCache cache = new LRUCache(2);

        cache.put(1, 1);
        cache.put(2, 2);
        System.out.println(cache.get(1));
        cache.put(3, 3);
        System.out.println(cache.get(2));

    }
}
复制代码

LRU 算法分析

缓存命中率是缓存系统的很是重要指标,若是缓存系统的缓存命中率太低,将会致使查询回流到数据库,致使数据库的压力升高。

结合以上分析 LRU 算法优缺点。

LRU 算法优点在于算法实现难度不大,对于对于热点数据, LRU 效率会很好。

LRU 算法劣势在于对于偶发的批量操做,好比说批量查询历史数据,就有可能使缓存中热门数据被这些历史数据替换,形成缓存污染,致使缓存命中率降低,减慢了正常数据查询。

LRU 算法改进方案

如下方案来源与 MySQL InnoDB LRU 改进算法

将链表拆分红两部分,分为热数据区,与冷数据区,如图所示。

LRUimmprove.png

改进以后算法流程将会变成下面同样:

  1. 访问数据若是位于热数据区,与以前 LRU 算法同样,移动到热数据区的头结点。
  2. 插入数据时,若缓存已满,淘汰尾结点的数据。而后将数据插入冷数据区的头结点。
  3. 处于冷数据区的数据每次被访问须要作以下判断:
    • 若该数据已在缓存中超过指定时间,好比说 1 s,则移动到热数据区的头结点。
    • 若该数据存在在时间小于指定的时间,则位置保持不变。

对于偶发的批量查询,数据仅仅只会落入冷数据区,而后很快就会被淘汰出去。热门数据区的数据将不会受到影响,这样就解决了 LRU 算法缓存命中率降低的问题。

其余改进方法还有 LRU-K,2Q,LIRS 算法,感兴趣同窗能够自行查阅。

欢迎关注个人公众号:程序通事,得到平常干货推送。若是您对个人专题内容感兴趣,也能够关注个人博客:studyidea.cn

其余平台.png
相关文章
相关标签/搜索