JavaShuo
栏目
标签
Assisted Excitation of Activations:A Learning Technique to Improve Object Detectors论文解读
时间 2020-12-23
标签
目标检测论文解读
繁體版
原文
原文链接
Assisted Excitation of Activations:A Learning Technique to Improve Object Detectors 这是cvpr2019上的一篇文章,以yolo为例,没有修改网络结构,也没有增加额外的计算负担。 (1)目的:解决yolo定位不准确和样本不均匀的问题。 (2)改进点:在训练阶段加入Assisted Excitation(AE)模块,
>>阅读原文<<
相关文章
1.
Assisted Excitation of Activations: A Learning Technique to Improve Object Detect
2.
Incremental Learning of Object Detectors without Catastrophic Forgetting 论文阅读
3.
Incremental Learning of Object Detectors without Catastrophic Forgetting详解
4.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 论文解读
5.
论文阅读:Learning to Segment Object Candidates(DeepMask)
6.
How To Improve Deep Learning Performance
7.
对抗样本(论文解读八):Towards More Robust Adversarial Attack Against Real World Object Detectors
8.
论文:Speed/accuracy trade-offs for object detectors
9.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 论文笔记
10.
对抗样本(论文解读一): DPATCH: An Adversarial Patch Attack on Object Detectors
更多相关文章...
•
C# 文本文件的读写
-
C#教程
•
*.hbm.xml映射文件详解
-
Hibernate教程
•
JDK13 GA发布:5大特性解读
•
Scala 中文乱码解决
相关标签/搜索
论文解读
excitation
technique
improve
assisted
detectors
learning
论文阅读
object...object
object
MyBatis教程
Spring教程
Thymeleaf 教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
1.2 Illustrator多文档的几种排列方式
2.
5.16--java数据类型转换及杂记
3.
性能指标
4.
(1.2)工厂模式之工厂方法模式
5.
Java记录 -42- Java Collection
6.
Java记录 -42- Java Collection
7.
github使用
8.
Android学习笔记(五十):声明、请求和检查许可
9.
20180626
10.
服务扩容可能引入的负面问题及解决方法
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Assisted Excitation of Activations: A Learning Technique to Improve Object Detect
2.
Incremental Learning of Object Detectors without Catastrophic Forgetting 论文阅读
3.
Incremental Learning of Object Detectors without Catastrophic Forgetting详解
4.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 论文解读
5.
论文阅读:Learning to Segment Object Candidates(DeepMask)
6.
How To Improve Deep Learning Performance
7.
对抗样本(论文解读八):Towards More Robust Adversarial Attack Against Real World Object Detectors
8.
论文:Speed/accuracy trade-offs for object detectors
9.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 论文笔记
10.
对抗样本(论文解读一): DPATCH: An Adversarial Patch Attack on Object Detectors
>>更多相关文章<<