JVM面试问题系列:7种JVM垃圾收集器特色,优劣势、及使用场景!

1、常见垃圾收集器

如今常见的垃圾收集器有以下几种:算法

新生代收集器:安全

  • Serial
  • ParNew
  • Parallel Scavenge

老年代收集器:性能优化

  • Serial Old
  • CMS
  • Parallel Old

堆内存垃圾收集器:G1服务器

每种垃圾收集器之间有连线,表示他们能够搭配使用。markdown

2、新生代垃圾收集器

(1)Serial 收集器多线程

Serial 是一款用于新生代的单线程收集器,采用复制算法进行垃圾收集。Serial 进行垃圾收集时,不只只用一条线程执行垃圾收集工做,它在收集的同时,全部的用户线程必须暂停(Stop The World)。并发

就好比妈妈在家打扫卫生的时候,确定不会边打扫边让儿子往地上乱扔纸屑,不然一边制造垃圾,一遍清理垃圾,这活啥时候也干不完。post

以下是 Serial 收集器和 Serial Old 收集器结合进行垃圾收集的示意图,当用户线程都执行到安全点时,全部线程暂停执行,Serial 收集器以单线程,采用复制算法进行垃圾收集工做,收集完以后,用户线程继续开始执行。性能

适用场景:Client 模式(桌面应用);单核服务器。测试

能够用 -XX:+UserSerialGC 来选择 Serial 做为新生代收集器。

(2)ParNew 收集器

ParNew 就是一个 Serial 的多线程版本,其它与Serial并没有区别。ParNew 在单核 CPU 环境并不会比 Serial 收集器达到更好的效果,它默认开启的收集线程数和 CPU 数量一致,能够经过 -XX:ParallelGCThreads 来设置垃圾收集的线程数。

以下是 ParNew 收集器和 Serial Old 收集器结合进行垃圾收集的示意图,当用户线程都执行到安全点时,全部线程暂停执行,ParNew 收集器以多线程,采用复制算法进行垃圾收集工做,收集完以后,用户线程继续开始执行。

适用场景:多核服务器;与 CMS 收集器搭配使用。当使用 -XX:+UserConcMarkSweepGC 来选择 CMS 做为老年代收集器时,新生代收集器默认就是 ParNew,也能够用 -XX:+UseParNewGC 来指定使用 ParNew 做为新生代收集器。

(3)Parallel Scavenge 收集器

Parallel Scavenge 也是一款用于新生代的多线程收集器,与 ParNew 的不一样之处是ParNew 的目标是尽量缩短垃圾收集时用户线程的停顿时间,Parallel Scavenge 的目标是达到一个可控制的吞吐量。

吞吐量就是 CPU 执行用户线程的的时间与 CPU 执行总时间的比值【吞吐量 = 运行用户代代码时间/(运行用户代码时间+垃圾收集时间)】,好比虚拟机一共运行了 100 分钟,其中垃圾收集花费了 1 分钟,那吞吐量就是 99% 。好比下面两个场景,垃圾收集器每 100 秒收集一次,每次停顿 10 秒,和垃圾收集器每 50 秒收集一次,每次停顿时间 7 秒,虽而后者每次停顿时间变短了,可是整体吞吐量变低了,CPU 整体利用率变低了。

能够经过 -XX:MaxGCPauseMillis 来设置收集器尽量在多长时间内完成内存回收,能够经过 -XX:GCTimeRatio 来精确控制吞吐量。

以下是 Parallel 收集器和 Parallel Old 收集器结合进行垃圾收集的示意图,在新生代,当用户线程都执行到安全点时,全部线程暂停执行,ParNew 收集器以多线程,采用复制算法进行垃圾收集工做,收集完以后,用户线程继续开始执行;在老年代,当用户线程都执行到安全点时,全部线程暂停执行,Parallel Old 收集器以多线程,采用标记整理算法进行垃圾收集工做。

适用场景:注重吞吐量,高效利用 CPU,须要高效运算且不须要太多交互。

可使用 -XX:+UseParallelGC 来选择 Parallel Scavenge 做为新生代收集器,jdk七、jdk8 默认使用 Parallel Scavenge 做为新生代收集器。

3、老年代垃圾收集器

(1)Serial Old 收集器

Serial Old 收集器是 Serial 的老年代版本,一样是一个单线程收集器,采用标记-整理算法。

以下图是 Serial 收集器和 Serial Old 收集器结合进行垃圾收集的示意图:

适用场景:Client 模式(桌面应用);单核服务器;与 Parallel Scavenge 收集器搭配;做为 CMS 收集器的后备预案。

(2)CMS(Concurrent Mark Sweep) 收集器

CMS 收集器是一种以最短回收停顿时间为目标的收集器,以 “ 最短用户线程停顿时间 ” 著称。整个垃圾收集过程分为 4 个步骤:

① 初始标记:标记一下 GC Roots 能直接关联到的对象,速度较快。

② 并发标记:进行 GC Roots Tracing,标记出所有的垃圾对象,耗时较长。

③ 从新标记:修正并发标记阶段引用户程序继续运行而致使变化的对象的标记记录,耗时较短。

④ 并发清除:用标记-清除算法清除垃圾对象,耗时较长。

整个过程耗时最长的并发标记和并发清除都是和用户线程一块儿工做,因此从整体上来讲,CMS 收集器垃圾收集能够看作是和用户线程并发执行的。

CMS 收集器也存在一些缺点:

对 CPU 资源敏感:默认分配的垃圾收集线程数为(CPU 数+3)/4,随着 CPU 数量降低,占用 CPU 资源越多,吞吐量越小

没法处理浮动垃圾:在并发清理阶段,因为用户线程还在运行,还会不断产生新的垃圾,CMS 收集器没法在当次收集中清除这部分垃圾。同时因为在垃圾收集阶段用户线程也在并发执行,CMS 收集器不能像其余收集器那样等老年代被填满时再进行收集,须要预留一部分空间提供用户线程运行使用。当 CMS 运行时,预留的内存空间没法知足用户线程的须要,就会出现 “ Concurrent Mode Failure ”的错误,这时将会启动后备预案,临时用 Serial Old 来从新进行老年代的垃圾收集。

由于 CMS 是基于标记-清除算法,因此垃圾回收后会产生空间碎片,能够经过 -XX:UserCMSCompactAtFullCollection 开启碎片整理(默认开启),在 CMS 进行 Full GC 以前,会进行内存碎片的整理。还能够用 -XX:CMSFullGCsBeforeCompaction 设置执行多少次不压缩(不进行碎片整理)的 Full GC 以后,跟着来一次带压缩(碎片整理)的 Full GC。

适用场景:重视服务器响应速度,要求系统停顿时间最短。可使用 -XX:+UserConMarkSweepGC 来选择 CMS 做为老年代收集器。

(3)Parallel Old 收集器

Parallel Old 收集器是 Parallel Scavenge 的老年代版本,是一个多线程收集器,采用标记-整理算法。能够与 Parallel Scavenge 收集器搭配,能够充分利用多核 CPU 的计算能力。

适用场景:与Parallel Scavenge 收集器搭配使用;注重吞吐量。jdk七、jdk8 默认使用该收集器做为老年代收集器,使用 -XX:+UseParallelOldGC 来指定使用 Paralle Old 收集器。

4、新生代和老年代垃圾收集器

G1 收集器

G1 收集器是 jdk1.7 才正式引用的商用收集器,如今已经成为 jdk9 默认的收集器。前面几款收集器收集的范围都是新生代或者老年代,G1 进行垃圾收集的范围是整个堆内存,它采用 “ 化整为零 ” 的思路,把整个堆内存划分为多个大小相等的独立区域(Region),在 G1 收集器中还保留着新生代和老年代的概念,它们分别都是一部分 Region,以下图:

每个方块就是一个区域,每一个区域多是 Eden、Survivor、老年代,每种区域的数量也不必定。JVM 启动时会自动设置每一个区域的大小(1M ~ 32M,必须是 2 的次幂),最多能够设置 2048 个区域(即支持的最大堆内存为 32M*2048 = 64G),假如设置 -Xmx8g -Xms8g,则每一个区域大小为 8g/2048=4M。

为了在 GC Roots Tracing 的时候避免扫描全堆,在每一个 Region 中,都有一个 Remembered Set 来实时记录该区域内的引用类型数据与其余区域数据的引用关系(在前面的几款分代收集中,新生代、老年代中也有一个 Remembered Set 来实时记录与其余区域的引用关系),在标记时直接参考这些引用关系就能够知道这些对象是否应该被清除,而不用扫描全堆的数据。

G1 收集器能够 “ 创建可预测的停顿时间模型 ”,它维护了一个列表用于记录每一个 Region 回收的价值大小(回收后得到的空间大小以及回收所需时间的经验值),这样能够保证 G1 收集器在有限的时间内能够得到最大的回收效率。

以下图所示,G1 收集器收集器收集过程有初始标记、并发标记、最终标记、筛选回收,和 CMS 收集器前几步的收集过程很类似:

① 初始标记:标记出 GC Roots 直接关联的对象,这个阶段速度较快,须要中止用户线程,单线程执行。

② 并发标记:从 GC Root 开始对堆中的对象进行可达新分析,找出存活对象,这个阶段耗时较长,但能够和用户线程并发执行。

③ 最终标记:修正在并发标记阶段引用户程序执行而产生变更的标记记录。

④ 筛选回收:筛选回收阶段会对各个 Region 的回收价值和成本进行排序,根据用户所指望的 GC 停顿时间来指定回收计划(用最少的时间来回收包含垃圾最多的区域,这就是 Garbage First 的由来——第一时间清理垃圾最多的区块),这里为了提升回收效率,并无采用和用户线程并发执行的方式,而是停顿用户线程。

适用场景:要求尽量可控 GC 停顿时间;内存占用较大的应用。能够用 -XX:+UseG1GC 使用 G1 收集器,jdk9 默认使用 G1 收集器。

5、JVM垃圾收集器总结

本文主要介绍了JVM中的垃圾回收器,主要包括串行回收器、并行回收器以及CMS回收器、G1回收器。他们各自都有优缺点,一般来讲你须要根据你的业务,进行基于垃圾回收器的性能测试,而后再作选择。下面给出配置回收器时,常用的参数:

-XX:+UseSerialGC:在新生代和老年代使用串行收集器

-XX:+UseParNewGC:在新生代使用并行收集器

-XX:+UseParallelGC :新生代使用并行回收收集器,更加关注吞吐量

-XX:+UseParallelOldGC:老年代使用并行回收收集器

-XX:ParallelGCThreads:设置用于垃圾回收的线程数

-XX:+UseConcMarkSweepGC:新生代使用并行收集器,老年代使用CMS+串行收集器

-XX:ParallelCMSThreads:设定CMS的线程数量

-XX:+UseG1GC:启用G1垃圾回收器

JVM系列:

深刻详解JVM 内存区域及内存溢出分析

JVM的判断对象是否已死和四种垃圾回收算法

JVM 配置经常使用参数和经常使用 GC 调优策略

7种JVM垃圾收集器特色,优劣势、及使用场景!

最后

后续会持续更新性能优化专题知识,写的很差的地方也但愿大牛能指点一下,你们以为不错能够点个赞在关注下,之后还会分享更多文章!