JavaShuo
栏目
标签
【论文笔记】Question Answering over Freebase with Multi-Column Convolutional Neural Networks
时间 2020-12-30
标签
KBQA
自动问答
深度学习
繁體版
原文
原文链接
一、概要 该文章发于ACL 2015,作者提出了一个基于Freebase,使用multi-column convolutional neural networks(MCCNNs)的自动问答模型,分别从答案路径(answer path), 答案背景信息(answer context), 以及答案类型(answer type) 来理解问题,并学习它们的分布式表示(distributed repre
>>阅读原文<<
相关文章
1.
论文浅尝 | Question Answering over Freebase
2.
Information Extraction over Structured Data: Question Answering with Freebase【论文笔记】
3.
【论文笔记】Information Extraction over Structured Data: Question Answering with Freebase
4.
论文解读:Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Info...
5.
【论文笔记】Question Answering with Subgraph Embeddings
6.
Question Answering with Subgraph Embeddings【论文笔记】
7.
Question Answering with Subgraph Embeddings笔记
8.
Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering笔记
9.
Question Answering by Reasoning Across Documents with Graph Convolutional Networks
10.
Character-Level Question Answering with Attention 论文笔记
更多相关文章...
•
ASP.NET Razor - 标记
-
ASP.NET 教程
•
CAP理论是什么?
-
NoSQL教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
Scala 中文乱码解决
相关标签/搜索
论文笔记
networks
question
answering
convolutional
freebase
neural
论文
论文阅读笔记
文笔
MyBatis教程
PHP教程
MySQL教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
说说Python中的垃圾回收机制?
2.
蚂蚁金服面试分享,阿里的offer真的不难,3位朋友全部offer
3.
Spring Boot (三十一)——自定义欢迎页及favicon
4.
Spring Boot核心架构
5.
IDEA创建maven web工程
6.
在IDEA中利用maven创建java项目和web项目
7.
myeclipse新导入项目基本配置
8.
zkdash的安装和配置
9.
什么情况下会导致Python内存溢出?要如何处理?
10.
CentoOS7下vim输入中文
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文浅尝 | Question Answering over Freebase
2.
Information Extraction over Structured Data: Question Answering with Freebase【论文笔记】
3.
【论文笔记】Information Extraction over Structured Data: Question Answering with Freebase
4.
论文解读:Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Info...
5.
【论文笔记】Question Answering with Subgraph Embeddings
6.
Question Answering with Subgraph Embeddings【论文笔记】
7.
Question Answering with Subgraph Embeddings笔记
8.
Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering笔记
9.
Question Answering by Reasoning Across Documents with Graph Convolutional Networks
10.
Character-Level Question Answering with Attention 论文笔记
>>更多相关文章<<