Result文件数听说明:java
Ip:106.39.41.166,(城市)数据库
Date:10/Nov/2016:00:01:02 +0800,(日期)apache
Day:10,(天数)app
Traffic: 54 ,(流量)ide
Type: video,(类型:视频video或文章article)oop
Id: 8701(视频或者文章的id)学习
测试要求:测试
一、 数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中。spa
两阶段数据清洗:日志
(1)第一阶段:把须要的信息从原始日志中提取出来
ip: 199.30.25.88
time: 10/Nov/2016:00:01:03 +0800
traffic: 62
文章: article/11325
视频: video/3235
(2)第二阶段:根据提取出来的信息作精细化操做
ip--->城市 city(IP)
date--> time:2016-11-10 00:01:03
day: 10
traffic:62
type:article/video
id:11325
(3)hive数据库表结构:
create table data( ip string, time string , day string, traffic bigint,
type string, id string )
2、数据处理:
·统计最受欢迎的视频/文章的Top10访问次数 (video/article)
·按照地市统计最受欢迎的Top10课程 (ip)
·按照流量统计最受欢迎的Top10课程 (traffic)
3、数据可视化:将统计结果倒入MySql数据库中,经过图形化展现的方式展示出来。
今天完成了MapReduce的基础学习,只实现了第一阶段里面数据的清洗 由于hive一直出错 没有实现把数据加载到hive里
这是wordcount代码 实现了对数据的统计个数 目前仅作到这儿了
今天不能及时完成缘由:1.对MapReduce没有提早去学习 ,如今已经学了MapReduce一部分,明天计划把上次11个实验弄懂学会,并完成第二阶段以及排序。
2.没有提早对本身的hive进行测试,结果课上发现hive配置有错误。
package QingXi; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount{ public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Job job = Job.getInstance(); job.setJobName("WordCount"); job.setJarByClass(WordCount.class); job.setMapperClass(doMapper.class); job.setReducerClass(doReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); Path in = new Path("hdfs://localhost:9000/user/hadoop/name/result.txt"); Path out = new Path("hdfs://localhost:9000/user/hadoop/name/out2"); FileInputFormat.addInputPath(job, in); FileOutputFormat.setOutputPath(job, out); System.exit(job.waitForCompletion(true) ? 0 : 1); } public static class doMapper extends Mapper<Object, Text, Text, IntWritable>{ public static final IntWritable one = new IntWritable(1); public static Text word = new Text(); @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer tokenizer = new StringTokenizer(value.toString(), ""); word.set(tokenizer.nextToken()); context.write(word, one); } } public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ private IntWritable result = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } result.set(sum); context.write(key, result); } } }