何时扩容:当向容器添加元素的时候,会判断当前容器的元素个数,若是大于等于阈值---即当前数组的长度乘以加载因子的值的时候,就要自动扩容啦。java
扩容(resize)就是从新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组没法装载更多的元素时,对象就须要扩大数组的长度,以便能装入更多的元素。固然Java里的数组是没法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像咱们用一个小桶装水,若是想装更多的水,就得换大水桶。算法
咱们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解咱们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。数组
这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。数据结构
文章中间部分:4、存储实现;详细解释了为何indexFor方法中要h & (length-1)优化
newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(若是发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,经过从新计算索引位置后,有可能被放到了新数组的不一样位置上。this
下面举个例子说明下扩容过程。spa
这句话是重点----hash(){return key % table.length;}方法,就是翻译下面的一行解释:.net
假设了咱们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。翻译
其中的哈希桶数组table的size=2, 因此key = 三、七、5,put顺序依次为 五、七、3。在mod 2之后都冲突在table[1]这里了。这里假设负载因子 loadFactor=1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,而后全部的Node从新rehash的过程。设计
下面咱们讲解下JDK1.8作了哪些优化。通过观测能够发现,咱们使用的是2次幂的扩展(指长度扩为原来2倍),因此,
通过rehash以后,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。对应的就是下方的resize的注释。
看下图能够明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key肯定索引位置的示例,图(b)表示扩容后key1和key2两种key肯定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。
元素在从新计算hash以后,由于n变为2倍,那么n-1的mask范围在高位多1bit(红色),所以新的index就会发生这样的变化:
所以,咱们在扩充HashMap的时候,不须要像JDK1.7的实现那样从新计算hash,只须要看看原来的hash值新增的那个bit是1仍是0就行了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,能够看看下图为16扩充为32的resize示意图:
这个设计确实很是的巧妙,既省去了从新计算hash值的时间,并且同时,因为新增的1bit是0仍是1能够认为是随机的,所以resize的过程,均匀的把以前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,若是在新表的数组索引位置相同,则链表元素会倒置,可是从上图能够看出,JDK1.8不会倒置。有兴趣的同窗能够研究下JDK1.8的resize源码,写的很赞,以下:
1 final Node<K,V>[] resize() { 2 Node<K,V>[] oldTab = table; 3 int oldCap = (oldTab == null) ? 0 : oldTab.length; 4 int oldThr = threshold; 5 int newCap, newThr = 0; 6 if (oldCap > 0) { 7 // 超过最大值就再也不扩充了,就只好随你碰撞去吧 8 if (oldCap >= MAXIMUM_CAPACITY) { 9 threshold = Integer.MAX_VALUE; 10 return oldTab; 11 } 12 // 没超过最大值,就扩充为原来的2倍 13 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && 14 oldCap >= DEFAULT_INITIAL_CAPACITY) 15 newThr = oldThr << 1; // double threshold 16 } 17 else if (oldThr > 0) // initial capacity was placed in threshold 18 newCap = oldThr; 19 else { // zero initial threshold signifies using defaults 20 newCap = DEFAULT_INITIAL_CAPACITY; 21 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); 22 } 23 // 计算新的resize上限 24 if (newThr == 0) { 25 26 float ft = (float)newCap * loadFactor; 27 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? 28 (int)ft : Integer.MAX_VALUE); 29 } 30 threshold = newThr; 31 @SuppressWarnings({"rawtypes","unchecked"}) 32 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; 33 table = newTab; 34 if (oldTab != null) { 35 // 把每一个bucket都移动到新的buckets中 36 for (int j = 0; j < oldCap; ++j) { 37 Node<K,V> e; 38 if ((e = oldTab[j]) != null) { 39 oldTab[j] = null; 40 if (e.next == null) 41 newTab[e.hash & (newCap - 1)] = e; 42 else if (e instanceof TreeNode) 43 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); 44 else { // 链表优化重hash的代码块 45 Node<K,V> loHead = null, loTail = null; 46 Node<K,V> hiHead = null, hiTail = null; 47 Node<K,V> next; 48 do { 49 next = e.next; 50 // 原索引 51 if ((e.hash & oldCap) == 0) { 52 if (loTail == null) 53 loHead = e; 54 else 55 loTail.next = e; 56 loTail = e; 57 } 58 // 原索引+oldCap 59 else { 60 if (hiTail == null) 61 hiHead = e; 62 else 63 hiTail.next = e; 64 hiTail = e; 65 } 66 } while ((e = next) != null); 67 // 原索引放到bucket里 68 if (loTail != null) { 69 loTail.next = null; 70 newTab[j] = loHead; 71 } 72 // 原索引+oldCap放到bucket里 73 if (hiTail != null) { 74 hiTail.next = null; 75 newTab[j + oldCap] = hiHead; 76 } 77 } 78 } 79 } 80 } 81 return newTab; 82 }