★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:http://www.javashuo.com/article/p-csihrhdh-me.html
➤若是连接不是山青咏芝的博客园地址,则多是爬取做者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持做者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html
Given two non-negative integers x
and y
, an integer is powerful if it is equal to x^i + y^j
for some integers i >= 0
and j >= 0
.git
Return a list of all powerful integers that have value less than or equal to bound
.github
You may return the answer in any order. In your answer, each value should occur at most once.微信
Example 1:app
Input: x = 2, y = 3, bound = 10 Output: [2,3,4,5,7,9,10] Explanation: 2 = 2^0 + 3^0 3 = 2^1 + 3^0 4 = 2^0 + 3^1 5 = 2^1 + 3^1 7 = 2^2 + 3^1 9 = 2^3 + 3^0 10 = 2^0 + 3^2
Example 2:less
Input: x = 3, y = 5, bound = 15 Output: [2,4,6,8,10,14]
Note:spa
1 <= x <= 100
1 <= y <= 100
0 <= bound <= 10^6
给定两个非负整数 x
和 y
,若是某一整数等于 x^i + y^j
,其中整数 i >= 0
且 j >= 0
,那么咱们认为该整数是一个强整数。code
返回值小于或等于 bound
的全部强整数组成的列表。htm
你能够按任何顺序返回答案。在你的回答中,每一个值最多出现一次。blog
示例 1:
输入:x = 2, y = 3, bound = 10 输出:[2,3,4,5,7,9,10] 解释: 2 = 2^0 + 3^0 3 = 2^1 + 3^0 4 = 2^0 + 3^1 5 = 2^1 + 3^1 7 = 2^2 + 3^1 9 = 2^3 + 3^0 10 = 2^0 + 3^2
示例 2:
输入:x = 3, y = 5, bound = 15 输出:[2,4,6,8,10,14]
提示:
1 <= x <= 100
1 <= y <= 100
0 <= bound <= 10^6
8ms
1 class Solution { 2 func powerfulIntegers(_ x: Int, _ y: Int, _ bound: Int) -> [Int] { 3 var xs:[Int] = [1] 4 var ys:[Int] = [1] 5 6 if x > 1 7 { 8 var p:Int = x 9 while(p <= bound) 10 { 11 xs.append(p) 12 p *= x 13 } 14 } 15 16 if y > 1 17 { 18 var p:Int = y 19 while(p <= bound) 20 { 21 ys.append(p) 22 p *= y 23 } 24 } 25 26 var s:Set<Int> = Set<Int>() 27 for xx in xs 28 { 29 for yy in ys 30 { 31 if xx + yy <= bound 32 { 33 s.insert(xx + yy) 34 } 35 } 36 } 37 return Array(s) 38 } 39 }
8ms
1 class Solution { 2 func powerfulIntegers(_ x: Int, _ y: Int, _ bound: Int) -> [Int] { 3 var res = [Int]() 4 var xx = [Int]() 5 var yy = [Int]() 6 if x == 0 { 7 xx = [0] 8 } else if x == 1 { 9 xx = [1] 10 } else { 11 xx.append(1) 12 var tmp = x 13 while tmp <= bound { 14 xx.append(tmp) 15 tmp *= x 16 } 17 } 18 19 if y == 0 { 20 yy = [0] 21 } else if y == 1 { 22 yy = [1] 23 } else { 24 yy.append(1) 25 var tmp = y 26 while tmp <= bound { 27 yy.append(tmp) 28 tmp *= y 29 } 30 } 31 32 var tmp = 0 33 34 for i in xx { 35 for u in yy { 36 tmp = i + u 37 if !res.contains(tmp) && tmp <= bound { 38 res.append(tmp) 39 } 40 if tmp > bound { 41 break 42 } 43 } 44 } 45 46 return res 47 } 48 }
16ms
1 class Solution { 2 func powerfulIntegers(_ x: Int, _ y: Int, _ bound: Int) -> [Int] { 3 var result = [Int]() 4 helper(x, y, 0, 0, bound, &result) 5 return result 6 } 7 8 func helper(_ x: Int, _ y: Int, _ powerX: Int, _ powerY: Int, _ bound: Int, _ result :inout [Int]) { 9 let sum = Int(pow(Double(x), Double(powerX)) + pow(Double(y), Double(powerY))) 10 if sum > bound { 11 return 12 } 13 14 if !result.contains(sum) { 15 result.append(sum) 16 } 17 18 if x > 1 { 19 helper(x, y, powerX + 1, powerY, bound, &result) 20 } 21 22 if y > 1 { 23 helper(x, y, powerX, powerY + 1, bound, &result) 24 } 25 } 26 }
20ms
1 class Solution { 2 func powerfulIntegers(_ x: Int, _ y: Int, _ bound: Int) -> [Int] { 3 if (x <= 0 && y <= 0) || (x == 1 && y == 0) || (x == 0 && y == 1) || (x == 1 && y == 1) { 4 let a = Int(pow(Double(x), 0.0) + pow(Double(y), 0.0)) 5 let b = Int(pow(Double(x), 1.0) + pow(Double(y), 1.0)) 6 let c = Int(pow(Double(x), 1.0) + pow(Double(y), 0.0)) 7 let d = Int(pow(Double(x), 0.0) + pow(Double(y), 1.0)) 8 var s = Set<Int>() 9 s.insert(a) 10 s.insert(b) 11 s.insert(c) 12 s.insert(d) 13 var arr = [Int]() 14 for n in s { 15 if n <= bound { 16 arr.append(n) 17 } 18 } 19 return arr 20 } 21 var s = Set<Int>() 22 var p1 = 0 23 var sum = 0 24 var count = 0 25 out: while true { 26 var p2 = 0 27 while sum <= bound { 28 sum = Int(pow(Double(x), Double(p1))) + Int(pow(Double(y), Double(p2))) 29 p2 += 1 30 if sum <= bound { 31 s.insert(sum) 32 } 33 count += 1 34 if count > 3000 { 35 break out 36 } 37 } 38 p1 += 1 39 sum = Int(pow(Double(x), Double(p1))) + Int(pow(Double(y), Double(0))) 40 if sum <= bound { 41 42 } else { 43 break 44 } 45 } 46 return Array(s) 47 } 48 }