集成学习boosting和bagging

集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能。这对“弱学习器”尤为明显,因此集成学习的很多理论研究都是针对弱学习器进行的,而基学习器有时也被直接称为弱学习器。弱学习器指泛化性能略优于随机猜测的学习器,例如在二分类问题上,精度略高于50%的分类器。个体学习器应该“好而不同”,即个体学习器性能不能太坏,且个体学习器之间要存在差异性。 根据个体学习器的生成方式,目前的集成学习
相关文章
相关标签/搜索