前面分别介绍了邻接表有向图的C和C++实现,本文经过Java实现邻接表有向图。html
目录
1. 邻接表有向图的介绍
2. 邻接表有向图的代码说明
3. 邻接表有向图的完整源码 java转载请注明出处:http://www.cnblogs.com/skywang12345/node
更多内容:数据结构与算法系列 目录git
邻接表有向图是指经过邻接表表示的有向图。github
上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,并且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。算法
上图右边的矩阵是G2在内存中的邻接表示意图。每个顶点都包含一条链表,该链表记录了"该顶点所对应的出边的另外一个顶点的序号"。例如,第1个顶点(顶点B)包含的链表所包含的节点的数据分别是"2,4,5";而这"2,4,5"分别对应"C,E,F"的序号,"C,E,F"都属于B的出边的另外一个顶点。数组
1. 基本定义数据结构
public class ListDG { // 邻接表中表对应的链表的顶点 private class ENode { int ivex; // 该边所指向的顶点的位置 ENode nextEdge; // 指向下一条弧的指针 } // 邻接表中表的顶点 private class VNode { char data; // 顶点信息 ENode firstEdge; // 指向第一条依附该顶点的弧 }; private VNode[] mVexs; // 顶点数组 ... }
(01) ListDG是邻接表对应的结构体。 mVexs则是保存顶点信息的一维数组。
(02) VNode是邻接表顶点对应的结构体。 data是顶点所包含的数据,而firstEdge是该顶点所包含链表的表头指针。
(03) ENode是邻接表顶点所包含的链表的节点对应的结构体。 ivex是该节点所对应的顶点在vexs中的索引,而nextEdge是指向下一个节点的。函数
2. 建立矩阵ui
这里介绍提供了两个建立矩阵的方法。一个是用已知数据,另外一个则须要用户手动输入数据。
2.1 建立图(用已提供的矩阵)
/* * 建立图(用已提供的矩阵) * * 参数说明: * vexs -- 顶点数组 * edges -- 边数组 */ public ListDG(char[] vexs, char[][] edges) { // 初始化"顶点数"和"边数" int vlen = vexs.length; int elen = edges.length; // 初始化"顶点" mVexs = new VNode[vlen]; for (int i = 0; i < mVexs.length; i++) { mVexs[i] = new VNode(); mVexs[i].data = vexs[i]; mVexs[i].firstEdge = null; } // 初始化"边" for (int i = 0; i < elen; i++) { // 读取边的起始顶点和结束顶点 char c1 = edges[i][0]; char c2 = edges[i][1]; // 读取边的起始顶点和结束顶点 int p1 = getPosition(edges[i][0]); int p2 = getPosition(edges[i][1]); // 初始化node1 ENode node1 = new ENode(); node1.ivex = p2; // 将node1连接到"p1所在链表的末尾" if(mVexs[p1].firstEdge == null) mVexs[p1].firstEdge = node1; else linkLast(mVexs[p1].firstEdge, node1); } }
该函数的做用是建立一个邻接表有向图。实际上,该方法建立的有向图,就是上面的图G2。该函数的调用方法以下:
char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'}; char[][] edges = new char[][]{ {'A', 'B'}, {'B', 'C'}, {'B', 'E'}, {'B', 'F'}, {'C', 'E'}, {'D', 'C'}, {'E', 'B'}, {'E', 'D'}, {'F', 'G'}}; ListDG pG; pG = new ListDG(vexs, edges);
2.2 建立图(本身输入)
/* * 建立图(本身输入数据) */ public ListDG() { // 输入"顶点数"和"边数" System.out.printf("input vertex number: "); int vlen = readInt(); System.out.printf("input edge number: "); int elen = readInt(); if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) { System.out.printf("input error: invalid parameters!\n"); return ; } // 初始化"顶点" mVexs = new VNode[vlen]; for (int i = 0; i < mVexs.length; i++) { System.out.printf("vertex(%d): ", i); mVexs[i] = new VNode(); mVexs[i].data = readChar(); mVexs[i].firstEdge = null; } // 初始化"边" //mMatrix = new int[vlen][vlen]; for (int i = 0; i < elen; i++) { // 读取边的起始顶点和结束顶点 System.out.printf("edge(%d):", i); char c1 = readChar(); char c2 = readChar(); int p1 = getPosition(c1); int p2 = getPosition(c2); // 初始化node1 ENode node1 = new ENode(); node1.ivex = p2; // 将node1连接到"p1所在链表的末尾" if(mVexs[p1].firstEdge == null) mVexs[p1].firstEdge = node1; else linkLast(mVexs[p1].firstEdge, node1); } }
点击查看:源代码