Map(映射)

散列表介绍:数组

数组和链表均可以是有序的(即存储顺序与取出顺序一致),但这样是有代价的,须要遍历才能够寻找某一特定元素;函数

而还有另外的一些存储结构:不在乎元素的顺序,可以快速的查找元素的数据spa

其中就有一种很是常见的:散列表设计

2.1散列表工做原理

散列表为每一个对象计算出一个整数,称为散列码根据这些计算出来的整数(散列码)保存在对应的位置上3d

在Java中,散列表用的是链表数组实现的每一个列表称之为桶。code

一个桶上可能会遇到被占用的状况(hashCode散列码相同,就存储在同一个位置上),这种状况是没法避免的,这种现象称之为:散列冲突对象

  • 此时须要用该对象与桶上的对象进行比较,看看该对象是否存在桶子上了~若是存在,就不添加了,若是不存在则添加到桶子上
  • 固然了,若是hashcode函数设计得足够好,桶的数目也足够,这种比较是不多的~
  • JDK1.8中,桶满时会从链表变成平衡二叉树

若是散列表太满,是须要对散列表再散列,建立一个桶数更多的散列表,并将原有的元素插入到新表中,丢弃原来的表~blog

  • 装填因子(load factor)决定了什么时候对散列表再散列~
  • 装填因子默认为0.75,若是表中超过了75%的位置已经填入了元素,那么这个表就会用双倍的桶数自动进行再散列

平衡树:知足平衡条件的树排序

AVL树,带有平衡条件的二叉排序树(平衡条件:每一个节点的左子树和右子树的高度最多差 1);索引

红黑树

在2-3树的理论基础上发明了红黑树(2-3-4树也是一样的道理,只是2-3树是最简单的一种状况,因此我就不说2-3-4树了)。

红黑树是对2-3查找树的改进,它能用一种统一的方式完成全部变换

红黑树用的是也是两种方式来替代2-3树不断的节点交换操做:

  • 旋转:顺时针旋转和逆时针旋转
  • 反色:交换红黑的颜色
  • 这个两个实现比2-3树交换的节点(合并,分解)要方便一些

红黑树为了保持平衡,还有制定一些约束,遵照这些约束的才能叫作红黑树:

  1. 红黑树是二叉搜索树。
  2. 根节点是黑色
  3. 每一个叶子节点都是黑色的空节点(NIL节点)
  4. 每一个红色节点的两个子节点都是黑色。(从每一个叶子到根的全部路径上不能有两个连续的红色节点)
  5. 从任一节点到其每一个叶子的全部路径都包含相同数目的黑色节点(每一条树链上的黑色节点数量(称之为“黑高”)必须相等)
  6. HashMap剖析

  7. 咱们知道Hash存储的底层是散列表,而在Java中散列表的实现是经过数组+链表的~我

  8. 咱们能够简单总结出HashMap:

    • 无序,容许为null,非同步
    • 底层由散列表(哈希表)实现
    • 初始容量和装载因子对HashMap影响挺大的,设置小了很差,设置大了也很差
      • 根据hash值肯定key在数组中的索引:
      • 咱们是根据key的哈希值来保存在散列表中的,咱们表默认的初始容量是16,要放到散列表中,就是0-15的位置上。也就是tab[i = (n - 1) & hash]。能够发现的是:在作&运算的时候,仅仅是后4位有效~那若是咱们key的哈希值高位变化很大,低位变化很小。直接拿过去作&运算,这就会致使计算出来的Hash值相同的不少。

        而设计者将key的哈希值的高位也作了运算(与高16位作异或运算,使得在作&运算时,此时的低位其实是高位与低位的结合),这就增长了随机性,减小了碰撞冲突的可能性!

    • put方法能够说是HashMap的核心,咱们来看看:
相关文章
相关标签/搜索