Canny检测算法与实现

1、原理

图象边缘就是图像颜色快速变化的位置,对于灰度图像来讲,也就是灰度值有明显变化的位置。图像边缘信息主要集中在高频段,图像锐化或检测边缘实质就是高通滤波。数值微分能够求变化率,在图像上离散值求梯度,图像处理中有多种边缘检测(梯度)算子,经常使用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子,二阶拉普拉斯算子等等,是基于寻找梯度强度。html

Canny 边缘检测算法是John F. Canny 于1986年开发出来的一个多级边缘检测算法,也被不少人认为是边缘检测的 最优算法, 最优边缘检测的三个主要评价标准是:c++

低错误率: 标识出尽量多的实际边缘,同时尽量的减小噪声产生的误报。算法

高定位性: 标识出的边缘要与图像中的实际边缘尽量接近。测试

最小响应: 图像中的边缘只能标识一次。spa

Canny算子求边缘点具体算法步骤以下:.net

1. 用高斯滤波器平滑图像.3d

2. 用一阶偏导有限差分计算梯度幅值和方向.code

3. 对梯度幅值进行非极大值抑制.component

4. 用双阈值算法检测和链接边缘.orm

2、实现步骤

2.一、消除噪声

使用高斯平滑滤波器卷积降噪。下面显示了一个 size = 5 的高斯内核示例:

2.二、计算梯度幅值和方向

按照Sobel滤波器的步骤,计算水平和垂直方向的差分Gx和Gy:

 在vs中能够看到sobel像素值和形状:

梯度幅值和方向为:

梯度方向近似到四个可能角度之一(通常 0, 45, 90, 135)。

2.三、非极大值抑制

非极大值抑制是指寻找像素点局部最大值。sobel算子检测出来的边缘太粗了,咱们须要抑制那些梯度不够大的像素点,只保留最大的梯度,从而达到瘦边的目的。沿着梯度方向,比较它前面和后面的梯度值,梯度不够大的像素点极可能是某一条边缘的过渡点,排除非边缘像素,最后保留了一些细线。

在John Canny提出的Canny算子的论文中,非最大值抑制就只是在0、90、4五、135四个梯度方向上进行的,每一个像素点梯度方向按照相近程度用这四个方向来代替。梯度向量的每一个四分之一圆被45°线分红两种状况,一种状况是倾向于水平,另外一种倾向于竖直,一共 8 个方向。这种状况下,非最大值抑制所比较的相邻两个像素就是:

1)  0:左边 和 右边

2) 45:右上 和 左下

3) 90:上边 和 下边

4)135:左上 和 右下

这样作的好处是简单,可是这种简化的方法没法达到最好的效果,由于天然图像中的边缘梯度方向不必定是沿着这四个方向的,即梯度方向的线并无落在8邻域坐标点上。所以,就有很大的必要进行插值,找出在一个像素点上最能吻合其所在梯度方向的两侧的像素值。

若是|gx|>|gy|,这说明该点的梯度方向更靠近X轴方向,因此g2和g4则在C的左右,咱们能够用下面来讲明这两种状况(方向相同和方向不一样):

可使用插值计算出真实梯度值:

其中,插值计算方式为:dTemp1 = weight*g1 + (1-weight)*g2; dTemp2 = weight*g3 + (1-weight)*g4;

Matlab使用很是有技巧的方式来计算方向,以下不只作了dx、dy的大小判断还作了方向的断定。

witch direction
    case 1
        idx = find((iy<=0 & ix>-iy)  | (iy>=0 & ix<-iy));
    case 2
        idx = find((ix>0 & -iy>=ix)  | (ix<0 & -iy<=ix));
    case 3
        idx = find((ix<=0 & ix>iy) | (ix>=0 & ix<iy));
    case 4
        idx = find((iy<0 & ix<=iy) | (iy>0 & ix>=iy));
end

2.四、双阈值检测和区域连通

最后一步,Canny 使用了滞后阈值,滞后阈值须要两个阈值(高阈值和低阈值)。若是边缘像素的梯度值高于高阈值,则将其标记为强边缘像素;若是边缘像素的梯度值小于高阈值而且大于低阈值,则将其标记为弱边缘像素;若是边缘像素的梯度值小于低阈值,则会被抑制。阈值的选择取决于给定输入图像的内容。Canny 推荐的 高:低 阈值比在 2:1 到3:1之间。

三、代码实现

3.1 计算梯度

/*
* Sobel 梯度计算
*/
Mat gradients(Mat &img, Mat &sobel)
{
    int W = img.cols;
    int H = img.rows;

    Mat dx = Mat_<int>(img.size());
    int border = (int)sobel.rows / 2;

    for (int r = border; r < H - border; r++)
    {
        for (int c = border; c < W - border; c++)
        {
            float tmp = 0;
            for (int i = -border; i <= border; i++) {
                for (int j = -border; j <= border; j++) {
                    tmp += (int)img.data[(r + i)*W + c + j] * sobel.at<int>(i + border, j + border); 
                }
            }

            dx.at<int>(r, c) = tmp;
        }
    }
    return dx;
}

3.2计算非极大值抑制(详细推导过程见参考文献文章)

/*
fucntion: non-maximum suppression
input:
pMag:   pointer to Magnitude,
pGradX: gradient of x-direction
pGradY: gradient of y-direction
sz: size of pMag (width = size.cx, height = size.cy)
limit: limitation
output:
pNSRst: result of non-maximum suppression
*/
void NonMaxSuppress(int *pMag, int * pGradX, int *pGradY, Size sz, int *pNSRst)
{
    long x, y;
    int nPos;
    // the component of the gradient
    int gx, gy;
    // the temp varialbe
    int g1, g2, g3, g4;
    double weight;
    double dTemp, dTemp1, dTemp2;
    //设置图像边缘为不可能的分界点
    for (x = 0; x < sz.width; x++)
    {
        pNSRst[x] = 0;
        pNSRst[(sz.height - 1)*sz.width + x] = 0;
    }
    for (y = 0; y < sz.height; y++)
    {
        pNSRst[y*sz.width] = 0;
        pNSRst[y*sz.width + sz.width - 1] = 0;
    }

    for (y = 1; y < sz.height - 1; y++)
    {
        for (x = 1; x < sz.width - 1; x++)
        {
            nPos = y * sz.width + x;
            // if pMag[nPos]==0, then nPos is not the edge point
            if (pMag[nPos] == 0)
            {
                pNSRst[nPos] = 0;
            }
            else
            {
                // the gradient of current point
                dTemp = pMag[nPos];
                // x,y 方向导数
                gx = pGradX[nPos];
                gy = pGradY[nPos];
                //若是方向导数y份量比x份量大,说明导数方向趋向于y份量
                if (abs(gy) > abs(gx))
                {
                    // calculate the factor of interplation
                    weight = fabs(gx) / fabs(gy);
                    g2 = pMag[nPos - sz.width];  // 上一行
                    g4 = pMag[nPos + sz.width];  // 下一行
                    //若是x,y两个方向导数的符号相同
                    //C 为当前像素,与g1-g4 的位置关系为:
                    //g1 g2
                    //   C
                    //   g4 g3
                    if (gx*gy > 0)
                    {
                        g1 = pMag[nPos - sz.width - 1];
                        g3 = pMag[nPos + sz.width + 1];
                    }
                    //若是x,y两个方向的方向导数方向相反
                    //C是当前像素,与g1-g4的关系为:
                    //    g2 g1
                    //    C
                    // g3 g4
                    else
                    {
                        g1 = pMag[nPos - sz.width + 1];
                        g3 = pMag[nPos + sz.width - 1];
                    }
                }
                else
                {
                    //插值比例
                    weight = fabs(gy) / fabs(gx);
                    g2 = pMag[nPos + 1]; //后一列
                    g4 = pMag[nPos - 1];    // 前一列                
                    //若是x,y两个方向的方向导数符号相同
                    //当前像素C与 g1-g4的关系为
                    // g3
                    // g4 C g2
                    //       g1
                    if (gx * gy > 0)
                    {
                        g1 = pMag[nPos + sz.width + 1];
                        g3 = pMag[nPos - sz.width - 1];
                    }

                    //若是x,y两个方向导数的方向相反
                    // C与g1-g4的关系为
                    // g1
                    // g4 C g2
                    //      g3
                    else
                    {
                        g1 = pMag[nPos - sz.width + 1];
                        g3 = pMag[nPos + sz.width - 1];
                    }
                }

                dTemp1 = weight * g1 + (1 - weight)*g2;
                dTemp2 = weight * g3 + (1 - weight)*g4;
                if(dTemp )
                //当前像素的梯度是局部的最大值
                //该点多是边界点
                if (dTemp >= dTemp1 && dTemp >= dTemp2)
                {
                    pNSRst[nPos] = dTemp;
                }
                else
                {
                    //不多是边界点
                    pNSRst[nPos] = 0;
                }
            }
        }
    }
}

3.3双阈值检测和边缘链接

void duble_threshold(Mat &pMag, Mat &pThreadImg, float threshold)
{
    double maxv;
    int * img_ptr = pMag.ptr<int>(0);
    uchar * dst_ptr = pThreadImg.ptr<uchar>(0);
    minMaxLoc(pMag, 0, &maxv, 0, 0);
    cout << "max" << maxv << endl;

    int TL = 0.333 * threshold *maxv; // 1/3 of TH
    int TH = threshold *maxv;
    int w = pMag.cols;
    int h = pMag.rows;

    for (int r = 1; r < pMag.rows; r++)
    {
        for (int c = 1; c < pMag.cols; c++)
        {
            int tmp = img_ptr[r*w + c];
            if (tmp < TL) {
                dst_ptr[r*w + c] = 0;
            }
            else if (tmp >= TH) {
                dst_ptr[r*w + c] = 255;
            }
            else {
                bool connect = false;
                for(int i=-1; i<=1 && connect == false; i++)
                    for (int j = -1; j <= 1 && connect == false; j++)
                    {
                        if (img_ptr[r + i, c + j] >= TH) 
                        {
                            dst_ptr[r*w + c] = 255;
                            connect = true;
                            break;
                        }
                        else  dst_ptr[r*w + c] = 0;
                    }
            }
        }
    }
}

4、测试结论

测试1:左侧是原图,右侧是进行了sobel梯度计算和非极大值抑制后的图。

可见右图,在企鹅轮廓内部还有孤立的点,放大后以下图。

 

 使用双阈值限定后以下图,内部点消失了。

测试2:选择合适的阈值,图像中心的白色噪点能够消除。

测试3:

以下图,图2的双阈值计算梯度后最大梯度360,图3使用0.5倍高阈值,轮廓不连贯,可见阈值太高。改成0.2倍高阈值,结果如图4,改善了轮廓缺失问题。

五、参考文献

一、《数字图像处理与机器视觉》,第二版。 张铮、徐超、任淑霞、韩海玲等编著。

二、Canny 边缘检测

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html

三、Sobel算子的数学基础

http://blog.sciencenet.cn/blog-425437-1139187.html

四、Canny边缘检测

http://www.javashuo.com/article/p-vyxxlvap-bq.html

五、Canny算子中的非极大值抑制(Non-Maximum Suppression)分析

http://www.javashuo.com/article/p-utcwxwjh-mo.html

六、一种改进非极大值抑制的Canny边缘检测算法

https://www.doc88.com/p-5174766661571.html

 

我的博客,转载请注明。

 http://www.javashuo.com/article/p-clwmlfrq-ds.html

相关文章
相关标签/搜索