机器学习之随机森林(机器学习技法)

随机森林(RandomForest) 集成学习中的Bagging通过bootstrapping的方式进行抽取不同的资料从每一堆资料中学得一个小的模型g,然后再将这些小的模型进行融合进而得到一个更为稳定的大的模型G。决策树模型通过递归的方式按照某些特征进行分支得到更小的树,最后通过检测不纯度来决定是否停止切割。这个模型受资料影响较大,所以得到的模型不够稳定。如果将这两种学习模型合在一起就会构成一个既
相关文章
相关标签/搜索