欠拟合和过拟合简介

欠拟合和过拟合简介 机器/深度学习的基本问题是利用模型对图像、语音、数字等数据进行拟合。学习的目的是对未曾在训练集合出现的样本能够正确预测。 在进行如下讲解之前先简单地介绍几个概念:模型对训练集数据的误差称为经验误差,对测试集数据的误差称为泛化误差。模型对训练集以外样本的预测能力就称为模型的泛化能力,追求这种泛化能力始终是机器与深度学习的目标。过拟合(overfitting)和欠拟合(underf
相关文章
相关标签/搜索