三种推荐算法的介绍

1.推荐算法 1.1.协同过滤 协同过滤是目前应用最广泛的推荐算法,它仅仅通过了解用户与物品之间的关系进行推荐,而根本不会考虑到物品本身的属性。 可分成两类: 1、基于用户(user-based)的协同过滤 2、基于商品(item-based)的协同过滤 1.1.1.基于用户的协同过滤 基本思想: 基于用户对物品的偏好找到邻居用户(相似用户),然后将邻居用户(相似用户)喜欢的东西推荐给当前用户。
相关文章
相关标签/搜索