学 无 止 境 , 与 君 共 勉 。css
HyperLogLog
是Redis
中的高级数据结构,它主要用于对海量数据(能够统计2^64个数据)作基数统计(去重统计数量)。它的特色是速度快,占用空间小(12KB)。可是计算存会在偏差,标准偏差为0.81%。HyperLogLog
只会根据输入元素来计算基数,而不会储存输入元素自己,因此他并不能判断给定的元素是否已经存在了。java
将指定的元素添加到HyperLogLog
中,能够添加多个元素git
public void pfAdd(String key, String... value) {
stringRedisTemplate.opsForHyperLogLog().add(key, value);
}
复制代码
返回给定HyperLogLog
的基数估算值。当一次统计多个HyperLogLog
时,须要对多个HyperLogLog
结构进行比较,并将并集的结果放入一个临时的HyperLogLog
,性能不高,谨慎使用github
public Long pfCount(String... key) {
return stringRedisTemplate.opsForHyperLogLog().size(key);
}
复制代码
将多个HyperLogLog
进行合并,将并集的结果放入一个指定的HyperLogLog中web
public void pfMerge(String destKey, String... sourceKey) {
stringRedisTemplate.opsForHyperLogLog().union(destKey, sourceKey);
}
复制代码
基于SpringBoot的进行偏差测试,初始化5个HyperLogLog
,每一个随机添加10000个元素,而后调用pfcount
查看具体偏差:redis
@RestController
@RequestMapping("/redis/hll")
public class HyperController {
private final RedisService redisService;
public HyperController(RedisService redisService) {
this.redisService = redisService;
}
@GetMapping("/init")
public String init() {
for (int i = 0; i < 5; i++) {
Thread thread = new Thread(() -> {
String name = Thread.currentThread().getName();
Random r = new Random();
int begin = r.nextInt(100) * 10000;
int end = begin + 10000;
for (int j = begin; j < end; j++) {
redisService.pfAdd("hhl:" + name, j + "");
}
System.out.printf("线程【%s】完成数据初始化,区间[%d, %d)\n", name, begin, end);
},
i + "");
thread.start();
}
return "success";
}
@GetMapping("/count")
public String count() {
long a = redisService.pfCount("hhl:0");
long b = redisService.pfCount("hhl:1");
long c = redisService.pfCount("hhl:2");
long d = redisService.pfCount("hhl:3");
long e = redisService.pfCount("hhl:4");
System.out.printf("hhl:0 -> count: %d, rate: %f\n", a, (10000 - a) * 1.00 / 100);
System.out.printf("hhl:1 -> count: %d, rate: %f\n", b, (10000 - b) * 1.00 / 100);
System.out.printf("hhl:2 -> count: %d, rate: %f\n", c, (10000 - c) * 1.00 / 100);
System.out.printf("hhl:3 -> count: %d, rate: %f\n", d, (10000 - d) * 1.00 / 100);
System.out.printf("hhl:4 -> count: %d, rate: %f\n", e, (10000 - e) * 1.00 / 100);
return "success";
}
}
复制代码
初始化数据,调用接口:http://localhost:8080/redis/hll/init
spring
线程【4】完成数据初始化,区间[570000, 580000)
线程【2】完成数据初始化,区间[70000, 80000)
线程【0】完成数据初始化,区间[670000, 680000)
线程【1】完成数据初始化,区间[210000, 220000)
线程【3】完成数据初始化,区间[230000, 240000)
复制代码
查看具体统计数,计算偏差:http://localhost:8080/redis/hll/count
apache
hhl:0 -> count: 10079, rate: -0.790000
hhl:1 -> count: 9974, rate: 0.260000
hhl:2 -> count: 10018, rate: -0.180000
hhl:3 -> count: 10053, rate: -0.530000
hhl:4 -> count: 9985, rate: 0.150000
复制代码
好比要统计文章的热度和有效用户点击数。能够经过Reis的计数器来统计热度,每次请就执行incr
指令。经过HyperLogLog
来统计有效用户数。微信
经过AOP和自定义注解来对须要统计的文章进行统计:cookie
HyperLogLog
对应的key
引入redis
和aop
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!-- redis Lettuce 模式 链接池 -->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
复制代码
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Article {
/**
* 值为对应HyperLogLog的key
*/
String value() default "";
}
复制代码
@Aspect
@Component
public class ArticleAop {
private static final String PV_PREFIX = "PV:";
private static final String UV_PREFIX = "UV:";
@Autowired
private RedisService redisService;
/**
* 定义切入点
*/
@Pointcut("@annotation(org.ylc.note.redis.hyperloglog.annotation.Article)")
private void statistics() {
}
@Around("statistics()")
public Object doAround(ProceedingJoinPoint proceedingJoinPoint) throws Throwable {
// 获取注解
Method method = ((MethodSignature) proceedingJoinPoint.getSignature()).getMethod();
Article visitPermission = method.getAnnotation(Article.class);
String value = visitPermission.value();
// 获取请求信息
ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
HttpServletRequest request = attributes.getRequest();
// 这里用来模拟,直接经过参数传入。实际项目中能够根据token或者cookie来实现
String userId = request.getParameter("userId");
// 热度
redisService.incr(PV_PREFIX + value);
// 用户量
redisService.pfAdd(UV_PREFIX + value, userId);
// 执行具体方法
return proceedingJoinPoint.proceed();
}
}
复制代码
在须要统计的接口上加上@Article()
注解
@RestController
@RequestMapping("/redis/article")
public class ArticleController {
@Autowired
private RedisService redisService;
@Article("it")
@GetMapping("/it")
public String it(String userId) {
String pv = redisService.get("PV:it");
long uv = redisService.pfCount("UV:it");
return String.format("当前用户:【%s】,当前it类热度:【%s】,访问用户数:【%d】", userId, pv, uv);
}
@Article("news")
@GetMapping("/news")
public String news(String userId) {
String pv = redisService.get("PV:news");
long uv = redisService.pfCount("UV:news");
return String.format("当前用户:【%s】,当前news类热度:【%s】,访问用户数:【%d】", userId, pv, uv);
}
@GetMapping("/statistics")
public Object statistics() {
String pvIt = redisService.get("PV:it");
long uvIt = redisService.pfCount("UV:it");
String pvNews = redisService.get("PV:news");
long uvNews = redisService.pfCount("UV:news");
redisService.pfMerge("UV:merge", "UV:it", "UV:news");
long uvMerge = redisService.pfCount("UV:merge");
Map<String, String> result = new HashMap<>();
result.put("it", String.format("it类热度:【%s】,访问用户数:【%d】;", pvIt, uvIt));
result.put("news", String.format("news类热度:【%s】,访问用户数:【%d】", pvNews, uvNews));
result.put("merge", String.format("合并后访问用户数:【%d】", uvMerge));
return result;
}
}
复制代码
全部代码均上传至Github上,方便你们访问
>>>>>> Redis实战 — HyperLogLog <<<<<<
创做不易,若是各位以为有帮助,求点赞 支持
微信公众号: 俞大仙