tensor搭建--windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速

windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速

原文见于:http://www.jianshu.com/p/c245d46d43f0javascript

144 
做者 xushiluo 
2016.12.21 20:32* 字数 3096 阅读 12108评论 18

写在前面的话

2016年11月29日,Google Brain 工程师团队宣布在 TensorFlow 0.12 中加入初步的 Windows 支持。可是目前只支持64位,并且Python版本为3.5版本,须要CUDA 8.0 。
以前Tensorflow对windows的支持并很差,致使若是须要使用它,须要转移到Linux平台,或者使用Cygwin什么的,总之挺麻烦,如今好了。麻烦事google帮咱们解决了。感谢google!html

Tensorflow和Keras都是支持Python接口的,因此本文中说的都是搭建一个Python的深度学习环境。还有一点,我也是新手,写得很差请勿喷!忽视本文就好。java

若是你不清楚Keras和Tensorflow是什么关系?请看下图:python


Keras与Tensorflow和theano关系图.png

Keras是对Tensorflow或者Theano的再次封装,也就是以Tensorflow或Theano为后端,默认的后端是tensorflow,若是你想使用theano为后端,能够更改成theano。
Keras为何要对tensorflow和theano进行再次封装,固然是为了使用更简单!为了让咱们不用关注那么多的底层细节,把全部精力都放在实际问题上面。windows

Tesorflow与theano是可使用Nvidia GPU进行加速的,若是你的GPU不支持CUDA,那么也不用担忧,那就使用CPU,只是速度慢点(实际上是慢不少!(^_^))。若是你的GPU支持CUDA,不用犹豫了,果断使用CUDA进行加速吧,速度快个10~20倍,那是常事。后端

好了说了这么多,下面进入正题。api

1、文件准备

  • windows 10 64bit旗舰版(版本1607,OS内部版本 14393.576)服务器

  • cuda_8.0.44_win10.exe: CUDA安装文件。去NVIDIA官网下载网络

    CUDA是由显卡厂商NVIDIA推出的通用并行计算架构,该架构使GPU可以解决复杂的计算问题。架构

  • Visual Studio 2015 Community: 请使用Community版本(社区版),由于它是免费的!免费的!固然,你注册个微软帐号使用起来就更好了。

  • Rapid Environment Editor(环境变量编辑器)

    先把它安装了吧,编辑环境变量方便点。

  • Anaconda3-4.2.0-Windows-x86_64.exe

    Anaconda是一个Python科学计算环境,提供了不少经常使用的Python库,例如:
    numpy,scipy, matplotlib等等。自带的包管理器conda也很强大,能够方便地安装各类Python库。
    下载地址:https://www.continuum.io/downloads/

  • DXSDK_Jun10.exe

    微软的DirectX SDK工具包,不安装它的话,后面编辑CUDA_Samples是无法成功的。下载地址:https://pan.baidu.com/share/link?shareid=197164616&uk=369246564&fid=2918892502

  • cudnn-8.0-windows10-x64-v5.1.zip

    CUDA的神经网络加速库,能够在前面GPU加速基础上大概再提高1.5倍的速度。 下载地址:https://developer.nvidia.com/cudnn

1. 安装Rapid Environment Editor

这个东西是编辑环境变量的,挺好用的,先把它安装了吧。后面给本身省事。安装完成后,默认界面是英文的,到设置里面改成中文吧。启动的时候,设置位管理员启动吧,否则无法更改系统环境变量。

2. 安装DXSDK_Jun10.exe

直接按照提示下一步就行了。我在windows 10上安装的时候,最后的时候会报错,不过没有关系,关掉那个框。搜索下"d3dx9.h"、"d3dx10.h"、"d3dx11.h"头文件是否是存在,若是路径以下这个样子,就成功了。路径:C:\Program Files (x86)\Microsoft DirectX SDK (June 2010)\Include\d3dx9.h


DirectX SDK S1023错误.png

2、安装CUDA

深度学习库若是使用CUDA进行GPU加速,能够大大缩短计算时间。若是不须要GPU加速,直接跳到第三部分。

2.1 检查GPU是否支持CUDA

先肯定下本身的显卡型号(不要告诉我你不知道怎么查看本身的显卡型号)。安装CUDA前先检查下,本身的显卡是否支持CUDA,能够从下面的网址查看本身的显卡是否在支持之列。若是你的显卡比较新,到这里检查是否支持CUDA:https://developer.nvidia.com/cuda-gpus
若是你的显卡很老,请到以下连接检查是否支持CUDA:https://developer.nvidia.com/cuda-legacy-gpus
注意笔记本和desktop的区别。

若是本身电脑显卡不支持的话就跳过第二部分,直接到第三部分。个人显卡是GTX650,是支持CUDA的,因此继续。

2.2 安装Visual Studio 2015 community

Visual Studio 2015 community的安装包到哪里找,我就不说了。安装VS2015前,请先断网,否则安装过程会下载一堆东西,过程极慢。安装时只选择Visual C++部分,其余均可以不装,这样安装起来更快。安装要一下子,请耐心等待。

2.3 CUDA安装

1. CUDA 8.0下载

从CUDA的官网下载安装文件,https://developer.nvidia.com/cuda-downloads,我安装时最新版本是 CUDA 8.0. 注意选择系统是windows 10,选择exe(local)那个Installer Type。以下图:


CUDA8.0下载.jpg

若是须要下载CUDA的历史版本,请到这里:https://developer.nvidia.com/cuda-toolkit-archive

2. 测试CUDA安装结果

打开命令提示符,输入:nvcc -V
能够看到以下信息:


nvcc.jpg

可是,这样并不表明安装成功了。等把CUDA_Samples示例编译经过不报错了,才能算是成功。

3. 编译CUDA示例程序

(1)在 c:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0 目录下,有CUDA的示例程序。因为我安装的是VS2015,因此我打开Samples_vs2015.sln那个解决方案文件,将解决方案配置更改成Release和x64.
使用Release模型,因为全部程序安装包用的都是64位版本,因此改成x64比较好。

(2)右键单击,编译整个解决方案。若是不出意外,将会编译成功。若是提示是缺乏:
"d3dx9.h"、"d3dx10.h"、"d3dx11.h"头文件 ,说明前面安装DirectX SDK没有安装好,从新安装下DXSDK_Jun10.exe,再次编译。

(3)关闭VS2015,在
c:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64\Release
目录下找到deviceQuery.exe这个文件。打开一个cmd窗口,定位到 c:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64\Release目录,输入:deviceQuery.exe ,而后回车。会获得以下结果:


检查CUDA是否安装成功.jpg

若是你的结果与上面相似,恭喜你!CUDA 8.0安装成功了!
若是报错了,请检查下前面的步骤是否严格执行了。从新再来,直到成功。

3、安装Tensorflow与Keras

3.1 安装Anaconda

1. 下载Anaconda

Anaconda包含不少科学计算的包,例如numpy、scipy等等,能够为你省去很多麻烦,它的官网在这里:https://www.continuum.io/downloads ,下载最新的Anaconda 4.2版本,Python版本选择3.5 64bit的那个版本。


下载Anaconda.jpg

万一你执意使用Python 2.7,我只能告诉你,最新的tensorflow-0.12在windows平台可能对python-2.7支持得不够好,中间会出问题的。

2. 安装Anaconda

  • 若是你以前有安装Anaconda 2系列的,在环境变量里面把相关的环境变量给删除了。
C:\Anaconda2
C:\Anaconda2\Scripts
C:\Anaconda2\Library\bin
  • 安装挺简单,我通常安装在C盘根目录下:c:\Anaconda3
    建议你们也安装到根目录下。
    安装时,在Install for那个界面,建议选择【All Users(requires admin privileges)】那个选项。

在以下那个界面中,把两个选项都勾上(默认是勾上的)


安装Anaconda-2个选项.png

3.2 更改pip的默认源

Python开发安装包时,使用pip进行包安装很是方便。但pip默认的源服务器在国外,下载很是慢,并且常常出现下载后安装出错问题。所以,有必要更换为国内的pypi源。

对于windows来讲,直接在当前用户目录下新建一个pip.ini文件,例如:c:\Users\Luoge\pip.ini
pip.ini的文件内容以下:

[global] index-url = http://mirrors.aliyun.com/pypi/simple/ [install] trusted-host=mirrors.aliyun.com

上面是将源更换为了阿里云的源(阿里爸爸牛逼!~),输入完成后,记得保存。

3.3 安装Tensorflow

下面两种安装方式二选一。

在线网络安装方式

保持网络链接,从开始菜单中打开Anaconda Prompt,输入:pip install tensorflow-gpu
而后就耐心等待吧。若是安装成功了,跳过离线安装方式。


在线安装tensorflow.png
  • 若是它提示你更新pip,你就按照提示更新pip好了。
  • 若是这种方式安装失败了,请看下面的 离线安装方式

离线安装方式

若是在线从pip安装tensorflow老是失败,那就下载python的whl包,本地安装的。
下载地址: http://www.lfd.uci.edu/~gohlke/pythonlibs/
Ctrl+F搜索Tensorflow,找到: tensorflow_gpu‑0.12.0rc1‑cp35‑cp35m‑win_amd64.whl
注意下载带gpu字样的版本,它才支持GPU加速。下载也不太快,视你的网速而定。
为了方便你们,我在百度云上上传了一份,你们也能够上百度云下载:http://pan.baidu.com/s/1o77WBe6
不客气!

从开始菜单中打开Anaconda Prompt,输入:pip install c:\Users\Luoge\Downloads\tensorflow_gpu-0.12.0rc1-cp35-cp35m-win_amd64.whl

而后,等待安装完成就行了。

3.4 安装Keras

保持网络链接,从开始菜单中打开Anaconda Prompt,输入:pip install keras

回车,安装就开始了,它会顺带把Theano也给安装上,可是这里安装的Theano版本比较老,是Theano-0.8.2。咱们使用tensorflow做为后端,而不是theano,因此不用理会它,让它装上就行了。

4、测试Keras是否安装成功

从开始菜单中打开Anaconda Prompt,在命令行中输入:python,再输入:

import tensorflow as tf sess = tf.Session() a = tf.constant(10) b = tf.constant(22) print(sess.run(a + b))

若是正确打印出结果32,不报错,说明tensorflow安装成功。

再输入:

import keras

若不报错,说明安装成功。

5、让速度更快一点

1. cuDNN能够在前面GPU加速基础上大概再提高1.5倍的速度,它由nVIDIA开发。能够到nVIDIA官网上下载。下载以前须要注册,而后问一系列问题,请耐心弄完。而后就能够下载了。不要下载错了,下载windows 10系统下64位的,最新的支持CUDA 8.0的cuDNN-5.1,文件名是:cudnn-8.0-windows10-x64-v5.1.zip


下载cudnn.jpg

2. 下载完成后解压缩。里面有bin、include、lib三个目录,将三个文件夹复制到安装CUDA的地方覆盖对应文件夹,默认文件夹在:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0

3. 如何验证CuDNN是否配置成功呢?
打开Anaconda Prompt,输入python,再输入import tensorflow,显示的若是是下图这样子,不提示没有安装cudnn,就成功了。


cudnn安装成功后.jpg

参考资料

 学习

若是以为个人文章对您有用,请随意打赏。您的支持将鼓励我继续创做!

赞扬支持
登陆 后发表评论
 
AromaticJourney
2楼 · 2017.01.02 23:01

说的很清楚,照着一套所有成功安装下来了!

a639bda3122e: 你好,请问接下来是须要设置环境变量吗?

2017.02.18 10:26   回复
 
花火_6704
6楼 · 2017.03.01 14:17

请问楼主,按照你的步骤安装以后获得这样的结果:
在Python import keras时会出现
WARNING (theano.sandbox.cuda): CUDA is installed, but device gpu is not available (error: cuda unavailable)
在网上百度了不少方法,都没有成功,请楼主指教~
感谢!!

xushiluo: @花火_6704 你的CUDA检查下,是否安装成功了

2017.03.03 17:52   回复

花火_6704: @xushiluo 
cmd:nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Mon_Jan__9_17:32:33_CST_2017
Cuda compilation tools, release 8.0, V8.0.60

2017.03.06 12:56   回复

花火_6704: @xushiluo 就是不知道哪里出了问题,如今只能跑CPU,心痛

2017.03.06 13:00   回复
 添加新评论  还有3条评论, 展开查看
 
定海小蜗牛
3楼 · 2017.01.10 22:15

说的很清楚,照着一套所有成功安装下来了!

 
白晓哲
4楼 · 2017.01.18 08:40

写的最好的cuda安装文章了

xushiluo: @白晓哲 谢谢!我也是安装过程当中,遇到了许多问题。写这篇文章是想让你们少走弯路。

2017.01.18 21:11   回复

李博星Boxing: 写的很好 一步步走下来了 很棒!

2017.02.14 13:52   回复
 
a639bda3122e
5楼 · 2017.02.18 09:06

你好,对个人收获蛮大,可是我这里有两个问题:1 这里面不须要配置环境变量吗?我看到上面只是说了删除原来配置的变量;2 我是官网上面下载的cuda8,可是我安装以后,没有sample这个文件夹。但愿能获得解答,谢谢。

 
dc76c2ede477
7楼 · 2017.03.09 11:01

装完后spyder打不开,大家是这样吗。。由于import theano报错:Python 3 ImportError: No module named 'ConfigParser'

 
残月魔都
8楼 · 2017.03.26 21:34

其实不用安装DirectX SDK也是能够用的
DX SDK估计是用于图形显示之类的,并行计算GPU加速应该是用不到的

 
Hypochondr_62b5
9楼 · 2017.03.29 14:51

你好,请问你的cuda有备份吗?我在官网下win64位的cuda,每次都是最后差一点点就下载出错了,搞得我好烦。

 
楼夏寅
10楼 · 2017.04.04 11:04

就是个人tensorflow是能用的(由于是以前装的)可是keras怎么都安装不了

相关文章
相关标签/搜索