最近在看检测方面的东西,Faster RCNN,其中涉及到Non-Maximum Suppression,论文中没具体展开,我就研究下了代码,这里作一个简单的总结,听这个名字感受是一个很高深的算法,其实很简单。
Non-Maximum Suppression就是根据score和box的坐标信息,从中找到置信度比较高的bounding box。首先,而后根据score进行排序,把score最大的bounding box拿出来。计算其他bounding box与这个box的IoU,而后去除IoU大于设定的阈值的bounding box。而后重复上面的过程,直至候选bounding box为空。说白了就是我要在一堆矩阵里面找出一些局部最大值,因此要把和这些局部最大值所表明矩阵IoU比较大的去除掉,这样就能获得一些权值很大,并且IoU又比较小的bounding box。git
function pick = nms(boxes, overlap) % top = nms(boxes, overlap) % Non-maximum suppression. (FAST VERSION) % Greedily select high-scoring detections and skip detections % that are significantly covered by a previously selected % detection. % % NOTE: This is adapted from Pedro Felzenszwalb's version (nms.m), % but an inner loop has been eliminated to significantly speed it % up in the case of a large number of boxes % Copyright (C) 2011-12 by Tomasz Malisiewicz % All rights reserved. % % This file is part of the Exemplar-SVM library and is made % available under the terms of the MIT license (see COPYING file). % Project homepage: https://github.com/quantombone/exemplarsvm if isempty(boxes) pick = []; return; end x1 = boxes(:,1); y1 = boxes(:,2); x2 = boxes(:,3); y2 = boxes(:,4); s = boxes(:,end); area = (x2-x1+1) .* (y2-y1+1); %计算出每个bounding box的面积 [vals, I] = sort(s); %根据score递增排序 pick = s*0; counter = 1; while ~isempty(I) last = length(I); i = I(last); pick(counter) = i; %选择score最大bounding box加入到候选队列 counter = counter + 1; xx1 = max(x1(i), x1(I(1:last-1))); yy1 = max(y1(i), y1(I(1:last-1))); xx2 = min(x2(i), x2(I(1:last-1))); yy2 = min(y2(i), y2(I(1:last-1))); w = max(0.0, xx2-xx1+1); h = max(0.0, yy2-yy1+1); inter = w.*h; %计算出每一bounding box与当前score最大的box的交集面积 o = inter ./ (area(i) + area(I(1:last-1)) - inter); %IoU(intersection-over-union) I = I(find(o<=overlap)); %找出IoU小于overlap阈值的index end pick = pick(1:(counter-1));