Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.算法
Note: You may not slant the container.app
分析:这道题与Trapping Rain Water、Largest Rectangle in Histogram有共通之处。解决这三道题,咱们都要保持对数字的敏感性,发现隐含在数字后的性质。对于这道题,container装水的量是有短板决定的。可能你们都知道这点,但如何利用这点来完成一个O(n)的算法则值得思考。Brute-force的算法复杂度为O(n^2),但其实在brute-force算法中的不少计算是没必要要的,咱们大可在计算的过程当中将这些没必要要(不多是最优解)的状况prune掉。对于一个高度的line,咱们只需求以该line为短板的最大装水量便可,知足最大装水量的container是由该line和离该line最远的且比该line高的line组成。在代码中咱们能够用two pointers来实现上述思想。一旦一个line是以短板的角色出现后,咱们即可以将其剔除,在后续计算中不考虑以它为边界的container。代码以下:spa
class Solution { public: int maxArea(vector<int> &height) { int result = 0; int left = 0, right = height.size()-1; while(left < right){ result = max(result, (right-left)*min(height[left], height[right])); if(height[left] < height[right]) left++; else right--; } return result; } };