[原]深刻对比数据科学工具箱:Python和R之争[2016版]

clipboard.png

概述

在真实的数据科学世界里,咱们会有两个极端,一个是业务,一个是工程。偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学。偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学。html

从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R >> Python >> Scalapython

在实际工做中,对于小数据集的简单分析来讲,使用EXCEL绝对是最佳选择。当咱们须要更多复杂的统计分析和数据处理时,咱们就须要转移到 Python 和 R 上。在肯定工程实施和大数据集操做时,咱们就须要依赖 Scala 的静态类型等工程方法构建完整的数据分析系统。git

Scala 和 Excel 是两个极端,对于大多数创业公司而言,咱们没有足够多的人手来实现专业化的分工,更多状况下,咱们会在 Python 和 R 上花费更多的时间同时完成数据分析(A型)和数据构建(B型)的工做。而许多人也对 Python 和 R 的交叉使用存在疑惑,因此本文将从实践角度对 Python 和 R 中作了一个详细的比较。github

应用场景对比

应用Python的场景

  • 网络爬虫/抓取:尽管 rvest 已经让 R 的网络爬虫/抓取变得容易,但 Python 的 beautifulsoup 和 Scrapy 更加成熟、功能更强大,结合django-scrapy咱们能够很快的构建一个定制化的爬虫管理系统。
  • 链接数据库: R 提供了许多链接数据库的选择,但 Python 只用 sqlachemy 经过ORM的方式,一个包就解决了多种数据库链接的问题,且在生产环境中普遍使用。Python因为支持占位符操做,在拼接SQL语句时也更加方便。
  • 内容管理系统:基于Django,Python能够快速经过ORM创建数据库、后台管理系统,而R

中的 Shiny 的鉴权功能暂时还须要付费使用。sql

  • API构建:经过Tornado这个标准的网络处理库,Python也能够快速实现轻量级的API,而R则较为复杂。

应用R的场景

  • 统计分析: 尽管 Python 里 Scipy、Pandas、statsmodels 提供了一系列统计工具 ,R 自己是专门为统计分析应用创建的,因此拥有更多此类工具。
  • 互动式图表/面板: 近来 bokeh、plotly、 intuitics 将 Python 的图形功能扩展到了网页浏览器,甚至咱们能够用tornado+d3来进一步定制可视化页面,但 R 的 shiny 和 shiny dashboard 速度更快,所需代码更少。

此外,当今数据分析团队拥有许多技能,选择哪一种语言实际上基于背景知识和经验。对于一些应用,尤为是原型设计和开发类,工做人员使用已经熟悉的工具会比较快速。数据库

数据流编程对比

接着,咱们将经过下面几个方面,对Python 和 R 的数据流编程作出一个详细的对比。django

  1. 参数传递
  2. 数据读取
  3. 基本数据结构对照
  4. 矩阵转化
  5. 矩阵计算
  6. 数据操做

参数传递

Python/R 均可以经过命令行的方式和其余语言作交互,经过命令行而不是直接调用某个类或方法能够更好地下降耦合性,在提升团队协做的效率。编程

参数传递 Python R
命令行输入 Python path/to/myscript.py arg1 arg2 arg3 Rscript path/to/myscript.R arg1 arg2 arg3
脚本识别 import sys my_args = sys.argv myArgs <- commandArgs(trailingOnly = TRUE)

数据传输与解析

对于数据传输与解析,咱们首推的格式是csv,由于一方面,csv格式的读写解析均可以经过 Python 和 R 的原生函数完成,不须要再安装其余包。另外一方面,csv格式能够很快的转化为 data frame 格式,而data frame 格式是数据流分析的核心。json

不过,实际状况中,咱们须要传输一些非结构化的数据,这时候就必须用到 JSNO 或者 YAML。segmentfault

数据传输与解析 Python R
CSV(原生) csv read.csv
CSV(优化) pandas.read_csv("nba_2013.csv") data.table::fread("nba_2013.csv")
JSON json(原生) jsonlite
YAML PyYAML yaml

基本数据结构

因为是从科学计算的角度出发,R 中的数据结构很是的简单,主要包括 向量(一维)、多维数组(二维时为矩阵)、列表(非结构化数据)、数据框(结构化数据)。而 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组(可读写、有序)、元组(只读、有序)、集合(惟1、无序)、字典(Key-Value)等等。

基本数据结构 Python R
数组 list:[1,'a'] :array:array(c(1,"a"),2)
Key-Value(非结构化数据) 字典:["a":1] lists
数据框(结构化数据) dataframe data.frame

Python dict 操做:dict["key"] 或者 dict.get("key","default_return")
R list 操做: list["key"] 或者 list$key

R 中数据结构转化(plyr) list data frame array
list llply() ldply() laply()
data frame dlply() ddply() daply()
array alply() adply() aaply()

MapReduce

Python R
map Map
reduce Reduce
filter filter

矩阵操做

实际上,Python(numpy) 和 R中的矩阵都是经过一个多维数组(ndarray)实现的。

矩阵转化 Pyhton R
维度 data.shape dim(data)
转为向量 data.flatten(1) as.vector(data)
转为矩阵 np.array([[1,2,3],[3,2,1]]) matrix(c(1,2,3,3,2,1),nrow=2,byrow=T)
转置 data.T t(data)
矩阵变形 data.reshape(1,np.prod(data.shape)) matrix(data,ncol=nrow(data)*ncol(data))
矩阵按行拼接 np.r_[A,B] rbind(A,B)
矩阵按列拼接 np.c_[A,B] cbind(A,B)
矩阵计算 Pyhton R
矩阵乘法 np.dot(A,B) A %*% B
矩阵幂指 np.power(A,3) A^3
全零矩阵 np.zeros((3,3)) matrix(0,nrow=3,ncol=3)
矩阵求逆 np.linalg.inv(A) solve(A)
协方差 np.cov(A,B) cov(A,B)
特征值 np.linalg.eig(A)[0] eigen(A)$values
特征向量 np.linalg.eig(A)[1] eigen(A)$vectors

数据框操做

参考 R 中的 data frame 结构,Python 的 Pandas包也实现了相似的 data frame 数据结构。如今,为了增强数据框的操做,R 中更是演进出了 data table 格式(简称dt),这种格式以 dt[where,select,group by] 的形式支持相似SQL的语法。

数据框操做 Python R
按Factor的Select操做 df[['a', 'c']] dt[,.(a,c),]
按Index的Select操做 df.iloc[:,1:2] dt[,1:2,with=FALSE]
按Index的Filter操做 df[1:2] dt[1:2]
groupby分组操做 df.groupby(['a','b'])[['c','d']].mean() aggregate(x=dt[, c("v1", "v2")], by=list(mydt2$by1, mydt2$by2), FUN = mean)
%in% 匹配操做 返回T/F pd.Series(np.arange(5),dtype=np.float32).isin([2, 4]) 0:4 %in% c(2,4)
match 匹配操做 返回Index pd.Series(pd.match(pd.Series(np.arange(5),dtype=np.float32),[2,4],np.nan)) match(0:4, c(2,4))
tapply df.pivot_table(values='a', columns='c', aggfunc=np.max) tapply(dt$a,dt$c,max)#其中dt$a是numeric,dt$c是nominal
查询操做 df[df.a <= df.b] dt[ a<=b ]
with操做 pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)}).eval('a + b') with(dt,a + b)
plyr操做 df.groupby(['month','week']).agg([np.mean, np.std]) ddply(dt, .(month, week), summarize,mean = round(mean(x), 2),sd = round(sd(x), 2))
多维数组融合 pd.DataFrame([tuple(list(x)+[val]) for x, val in np.ndenumerate(np.array(list(range(1,24))+[np.NAN]).reshape(2,3,4))]) data.frame(melt(array(c(1:23, NA), c(2,3,4))))
多维列表融合 pd.DataFrame(list(enumerate(list(range(1,5))+[np.NAN]))) data.frame(melt(as.list(c(1:4, NA))))
数据框融合 pd.melt(pd.DataFrame({'first' : ['John', 'Mary'],'last' : ['Doe', 'Bo'],'height' : [5.5, 6.0],'weight' : [130, 150]}), id_vars=['first', 'last']) melt(data.frame(first = c('John', 'Mary'),last = c('Doe', 'Bo'),height = c(5.5, 6.0),weight = c(130, 150), id=c("first", "last"))
数据透视表 pivot table pd.pivot_table(pd.melt(pd.DataFrame({ 'x': np.random.uniform(1., 168., 12), 'y': np.random.uniform(7., 334., 12), 'z': np.random.uniform(1.7, 20.7, 12), 'month': [5,6,7]4, 'week': [1,2]6}), id_vars=['month', 'week']), values='value', index=['variable','week'],columns=['month'], aggfunc=np.mean) acast(melt(data.frame(x = runif(12, 1, 168),y = runif(12, 7, 334),z = runif(12, 1.7, 20.7),month = rep(c(5,6,7),4),week = rep(c(1,2), 6)), id=c("month", "week")), week ~ month ~ variable, mean)
连续型数值因子分类 pd.cut(pd.Series([1,2,3,4,5,6]), 3) cut(c(1,2,3,4,5,6), 3)
名义型因子分类 pd.Series([1,2,3,2,2,3]).astype("category") factor(c(1,2,3,2,2,3))

数据流编程对比的示例

Python 的 Pandas 中的管道操做
(df
   .groupby(['a', 'b', 'c'], as_index=False)
   .agg({'d': sum, 'e': mean, 'f', np.std})
   .assign(g=lambda x: x.a / x.c)
   .query("g > 0.05")
   .merge(df2, on='a'))
R 的 dplyr 中的管道操做
flights %>% group_by(year, month, day) %>%
  select(arr_delay, dep_delay) 

  summarise(

    arr = mean(arr_delay, na.rm = TRUE),

    dep = mean(dep_delay, na.rm = TRUE)) %>%

  filter(arr > 30 | dep > 30)

数据可视化对比

绘制相关性散点图

对比数据相关性是数据探索经常使用的一种方法,下面是Python和R的对比。

Python
import seaborn as sns
import matplotlib.pyplot as plt
sns.pairplot(nba[["ast", "fg", "trb"]])
plt.show()

R
library(GGally)
ggpairs(nba[,c("ast", "fg", "trb")])

虽然咱们最终获得了相似的图形,这里R中GGally是依赖于ggplot2,而Python则是在matplotlib的基础上结合Seaborn,除了GGally在R中咱们还有不少其余的相似方法来实现对比制图,显然R中的绘图有更完善的生态系统。

绘制聚类效果图

这里以K-means为例,为了方便聚类,咱们将非数值型或者有确实数据的列排除在外。

Python
from sklearn.cluster import KMeans
kmeans_model = KMeans(n_clusters=5, random_state=1)
good_columns = nba._get_numeric_data().dropna(axis=1)
kmeans_model.fit(good_columns)
labels = kmeans_model.labels_

from sklearn.decomposition import PCA
pca_2 = PCA(2)
plot_columns = pca_2.fit_transform(good_columns)
plt.scatter(x=plot_columns[:,0], y=plot_columns[:,1], c=labels)
plt.show()

R
library(cluster)
set.seed(1)
isGoodCol <- function(col){
   sum(is.na(col)) == 0 && is.numeric(col) 
}
goodCols <- sapply(nba, isGoodCol)
clusters <- kmeans(nba[,goodCols], centers=5)
labels <- clusters$cluster

nba2d <- prcomp(nba[,goodCols], center=TRUE)
twoColumns <- nba2d$x[,1:2]
clusplot(twoColumns, labels)

速度对比

Python
import numpy as np
xx = np.zeros(100000000)
%timeit xx[:] = 1
The slowest run took 9.29 times longer than the fastest. This could mean that an intermediate result is being cached 
1 loops, best of 3: 111 ms per loop
R
xx <- rep(0, 100000000)
system.time(xx[] <- 1)
user  system elapsed 
  1.326   0.103   1.433

显然这里 R 1.326的成绩 比 Python 的 Numpy 3:111 的速度快了很多。

事实上,如今 R 和 Python 的数据操做的速度已经被优化得旗鼓至关了。下面是R中的 data.table、dplyr 与 Python 中的 pandas 的数据操做性能对比:

我曾经用data.table和pandas分别读取过一个600万行的IOT数据,反复10次,data.table以平均10s的成绩赛过了pandas平均15s的成绩,因此在IO上我倾向于选择使用data.table来处理大数据,而后喂给spark和hadoop进行进一步的分布式处理。

结论

Python 的 pandas 从 R 中偷师 dataframes,R 中的 rvest 则借鉴了 Python 的 BeautifulSoup,咱们能够看出两种语言在必定程度上存在的互补性,一般,咱们认为 Python 比 R 在泛型编程上更有优点,而 R 在数据探索、统计分析是一种更高效的独立数据分析工具。因此说,同时学会Python和R这两把刷子才是数据科学的王道。

参考资料

做为分享主义者(sharism),本人全部互联网发布的图文均听从CC版权,转载请保留做者信息并注明做者 Harry Zhu 的 FinanceR专栏: https://segmentfault.com/blog...,若是涉及源代码请注明GitHub地址: https://github.com/harryprince。微信号: harryzhustudio 商业使用请联系做者。
相关文章
相关标签/搜索