背景:这个是在3.10.0-957.el7.x86_64 遇到的一例crash。下面列一下咱们是怎么排查并解这个问题的。node
1、故障现象
Oppo云智能监控发现机器down机:linux
KERNEL: /usr/lib/debug/lib/modules/3.10.0-957.el7.x86_64/vmlinux .... PANIC: "Kernel panic - not syncing: Hard LOCKUP" PID: 14 COMMAND: "migration/1" TASK: ffff8f1bf6bb9040 [THREAD_INFO: ffff8f1bf6bc4000] CPU: 1 STATE: TASK_INTERRUPTIBLE (PANIC)
bt PID: 14 TASK: ffff8f1bf6bb9040 CPU: 1 COMMAND: "migration/1" #0 [ffff8f4afbe089f0] machine_kexec at ffffffff83863674 #1 [ffff8f4afbe08a50] __crash_kexec at ffffffff8391ce12 #2 [ffff8f4afbe08b20] panic at ffffffff83f5b4db #3 [ffff8f4afbe08ba0] nmi_panic at ffffffff8389739f #4 [ffff8f4afbe08bb0] watchdog_overflow_callback at ffffffff83949241 #5 [ffff8f4afbe08bc8] __perf_event_overflow at ffffffff839a1027 #6 [ffff8f4afbe08c00] perf_event_overflow at ffffffff839aa694 #7 [ffff8f4afbe08c10] intel_pmu_handle_irq at ffffffff8380a6b0 #8 [ffff8f4afbe08e38] perf_event_nmi_handler at ffffffff83f6b031 #9 [ffff8f4afbe08e58] nmi_handle at ffffffff83f6c8fc#10 [ffff8f4afbe08eb0] do_nmi at ffffffff83f6cbd8#11 [ffff8f4afbe08ef0] end_repeat_nmi at ffffffff83f6bd69 RIP: native_queued_spin_lock_slowpath+462] RIP: ffffffff839121ae RSP: ffff8f1bf6bc7c50 RFLAGS: 00000002 RAX: 0000000000000001 RBX: 0000000000000082 RCX: 0000000000000001 RDX: 0000000000000101 RSI: 0000000000000001 RDI: ffff8f1afdf55fe8---锁 RBP: ffff8f1bf6bc7c50 R8: 0000000000000101 R9: 0000000000000400 R10: 000000000000499e R11: 000000000000499f R12: ffff8f1afdf55fe8 R13: ffff8f1bf5150000 R14: ffff8f1afdf5b488 R15: ffff8f1bf5187818 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018<NMI exception stack> --- #12 [ffff8f1bf6bc7c50] native_queued_spin_lock_slowpath at ffffffff839121ae#13 [ffff8f1bf6bc7c58] queued_spin_lock_slowpath at ffffffff83f5bf4b#14 [ffff8f1bf6bc7c68] _raw_spin_lock_irqsave at ffffffff83f6a487#15 [ffff8f1bf6bc7c80] cpu_stop_queue_work at ffffffff8392fc70#16 [ffff8f1bf6bc7cb0] stop_one_cpu_nowait at ffffffff83930450#17 [ffff8f1bf6bc7cc0] load_balance at ffffffff838e4c6e#18 [ffff8f1bf6bc7da8] idle_balance at ffffffff838e5451#19 [ffff8f1bf6bc7e00] __schedule at ffffffff83f67b14#20 [ffff8f1bf6bc7e88] schedule at ffffffff83f67bc9#21 [ffff8f1bf6bc7e98] smpboot_thread_fn at ffffffff838ca562#22 [ffff8f1bf6bc7ec8] kthread at ffffffff838c1c31#23 [ffff8f1bf6bc7f50] ret_from_fork_nospec_begin at ffffffff83f74c1d
2、故障现象分析web
hardlock通常是因为关中断时间过长,从堆栈看,上面的"migration/1" 进程在抢spinlock,因为_raw_spin_lock_irqsave 会先调用 arch_local_irq_disable,而后再去拿锁,而arch_local_irq_disable 是常见的关中断函数,下面分析这个进程想要拿的锁被谁拿着。shell
x86架构下,native_queued_spin_lock_slowpath的rdi就是存放锁地址的centos
crash> arch_spinlock_t ffff8f1afdf55fe8struct arch_spinlock_t { val = { counter = 257 }}
下面,咱们须要了解,这个是一把什么锁。从调用链分析 idle_balance-->load_balance-->stop_one_cpu_nowait-->cpu_stop_queue_work反汇编 cpu_stop_queue_work 拿锁阻塞的代码:微信
dis -l ffffffff8392fc70 91 : 0xffffffff8392fc70 <cpu_stop_queue_work+48>: cmpb $0x0,0xc(%rbx)
85 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 86 { 87 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 88 unsigned long flags; 89 90 spin_lock_irqsave(&stopper->lock, flags);---因此是卡在拿这把锁 91 if (stopper->enabled) 92 __cpu_stop_queue_work(stopper, work); 93 else 94 cpu_stop_signal_done(work->done, false); 95 spin_unlock_irqrestore(&stopper->lock, flags); 96 }
看起来 须要根据cpu号,来获取对应的percpu变量 cpu_stopper,这个入参在 load_balance 函数中找到的最忙的rq,而后获取其对应的cpu号:架构
6545 static int load_balance(int this_cpu, struct rq *this_rq, 6546 struct sched_domain *sd, enum cpu_idle_type idle, 6547 int *should_balance) 6548 {.... 6735 if (active_balance) { 6736 stop_one_cpu_nowait(cpu_of(busiest), 6737 active_load_balance_cpu_stop, busiest, 6738 &busiest->active_balance_work); 6739 }.... 6781 }
dis -l load_balance |grep stop_one_cpu_nowait -B 6 0xffffffff838e4c4d <load_balance+2045>: callq 0xffffffff83f6a0e0 <_raw_spin_unlock_irqrestore>6736 : 0xffffffff838e4c52 <load_balance+2050>: mov 0x930(%rbx),%edi------------根据rbx能够取cpu号,rbx就是最忙的rq0xffffffff838e4c58 <load_balance+2056>: lea 0x908(%rbx),%rcx0xffffffff838e4c5f <load_balance+2063>: mov %rbx,%rdx0xffffffff838e4c62 <load_balance+2066>: mov $0xffffffff838de690,%rsi0xffffffff838e4c69 <load_balance+2073>: callq 0xffffffff83930420 <stop_one_cpu_nowait>
然后咱们再栈中取的数据以下:app
最忙的组是: rq.cpu ffff8f1afdf5ab80 cpu = 26
也就是说,1号cpu在等 percpu变量cpu_stopper 的26号cpu的锁。dom
而后咱们搜索这把锁在其余哪一个进程的栈中,找到了以下:编辑器
ffff8f4957fbfab0: ffff8f1afdf55fe8 --------这个在 355608 的栈中kmem ffff8f4957fbfab0 PID: 355608COMMAND: "custom_exporter" TASK: ffff8f4aea3a8000 [THREAD_INFO: ffff8f4957fbc000] CPU: 26--------恰好也是运行在26号cpu的进程 STATE: TASK_RUNNING (ACTIVE)
下面,就须要分析,为何位于26号cpu的进程 custom_exporter 会长时间拿着 ffff8f1afdf55fe8
咱们来分析26号cpu的堆栈:
bt -f 355608 PID: 355608 TASK: ffff8f4aea3a8000 CPU: 26 COMMAND: "custom_exporter"..... #3 [ffff8f1afdf48ef0] end_repeat_nmi at ffffffff83f6bd69 RIP: try_to_wake_up+114] RIP: ffffffff838d63d2 RSP: ffff8f4957fbfa30 RFLAGS: 00000002 RAX: 0000000000000001 RBX: ffff8f1bf6bb9844 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8f1bf6bb9844 RBP: ffff8f4957fbfa70 R8: ffff8f4afbe15ff0 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff8f1bf6bb9040 R14: 0000000000000000 R15: 0000000000000003 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0000<NMI exception stack> --- #4 [ffff8f4957fbfa30] try_to_wake_up at ffffffff838d63d2 ffff8f4957fbfa38: 000000000001ab80 0000000000000086 ffff8f4957fbfa48: ffff8f4afbe15fe0 ffff8f4957fbfb48 ffff8f4957fbfa58: 0000000000000001 ffff8f4afbe15fe0 ffff8f4957fbfa68: ffff8f1afdf55fe0 ffff8f4957fbfa80 ffff8f4957fbfa78: ffffffff838d6705 #5 [ffff8f4957fbfa78] wake_up_process at ffffffff838d6705 ffff8f4957fbfa80: ffff8f4957fbfa98 ffffffff8392fc05 #6 [ffff8f4957fbfa88] __cpu_stop_queue_work at ffffffff8392fc05 ffff8f4957fbfa90: 000000000000001a ffff8f4957fbfbb0 ffff8f4957fbfaa0: ffffffff8393037a #7 [ffff8f4957fbfaa0] stop_two_cpus at ffffffff8393037a..... ffff8f4957fbfbb8: ffffffff838d3867 #8 [ffff8f4957fbfbb8] migrate_swap at ffffffff838d3867 ffff8f4957fbfbc0: ffff8f4aea3a8000 ffff8f1ae77dc100 -------栈中的 migration_swap_arg ffff8f4957fbfbd0: 000000010000001a 0000000080490f7c ffff8f4957fbfbe0: ffff8f4aea3a8000 ffff8f4957fbfc30 ffff8f4957fbfbf0: 0000000000000076 0000000000000076 ffff8f4957fbfc00: 0000000000000371 ffff8f4957fbfce8 ffff8f4957fbfc10: ffffffff838dd0ba #9 [ffff8f4957fbfc10] task_numa_migrate at ffffffff838dd0ba ffff8f4957fbfc18: ffff8f1afc121f40 000000000000001a ffff8f4957fbfc28: 0000000000000371 ffff8f4aea3a8000 ---这里ffff8f4957fbfc30 就是 task_numa_env 的存放在栈中的地址 ffff8f4957fbfc38: 000000000000001a 000000010000003f ffff8f4957fbfc48: 000000000000000b 000000000000022c ffff8f4957fbfc58: 00000000000049a0 0000000000000012 ffff8f4957fbfc68: 0000000000000001 0000000000000003 ffff8f4957fbfc78: 000000000000006f 000000000000499f ffff8f4957fbfc88: 0000000000000012 0000000000000001 ffff8f4957fbfc98: 0000000000000070 ffff8f1ae77dc100 ffff8f4957fbfca8: 00000000000002fb 0000000000000001 ffff8f4957fbfcb8: 0000000080490f7c ffff8f4aea3a8000 ---rbx压栈在此,因此这个就是current ffff8f4957fbfcc8: 0000000000017a48 0000000000001818 ffff8f4957fbfcd8: 0000000000000018 ffff8f4957fbfe20 ffff8f4957fbfce8: ffff8f4957fbfcf8 ffffffff838dd4d3 #10 [ffff8f4957fbfcf0] numa_migrate_preferred at ffffffff838dd4d3 ffff8f4957fbfcf8: ffff8f4957fbfd88 ffffffff838df5b0 .....
总体上看,26号上的cpu也正在进行numa的balance动做,简单展开介绍一下numa在balance下的动做在 task_tick_fair 函数中:
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued){ struct cfs_rq *cfs_rq; struct sched_entity *se = &curr->se;
for_each_sched_entity(se) { cfs_rq = cfs_rq_of(se); entity_tick(cfs_rq, se, queued); }
if (numabalancing_enabled)----------若是开启numabalancing,则会调用task_tick_numa task_tick_numa(rq, curr);
update_rq_runnable_avg(rq, 1);}
而 task_tick_numa 会根据扫描状况,将当前进程须要numa_balance的时候推送到一个work中。经过调用change_prot_numa将全部映射到VMA的PTE页表项该为PAGE_NONE,使得下次进程访问页表的时候产生缺页中断,handle_pte_fault 函数会因为缺页中断的机会来根据numa 选择更好的node,具体再也不展开。
在 26号cpu的调用链中,stop_two_cpus-->cpu_stop_queue_two_works-->cpu_stop_queue_work 函数因为 cpu_stop_queue_two_works 被内联了,可是 cpu_stop_queue_two_works 调用 cpu_stop_queue_work有两次,因此须要根据压栈地址判断当前是哪次调用出现问题。
227 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 228 int cpu2, struct cpu_stop_work *work2) 229 { 230 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 231 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 232 int err; 233 234 lg_double_lock(&stop_cpus_lock, cpu1, cpu2); 235 spin_lock_irq(&stopper1->lock);---注意到这里已经持有了stopper1的锁 236 spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);..... 243 __cpu_stop_queue_work(stopper1, work1); 244 __cpu_stop_queue_work(stopper2, work2);..... 251 }
根据压栈的地址:
#5 [ffff8f4957fbfa78] wake_up_process at ffffffff838d6705 ffff8f4957fbfa80: ffff8f4957fbfa98 ffffffff8392fc05 #6 [ffff8f4957fbfa88] __cpu_stop_queue_work at ffffffff8392fc05 ffff8f4957fbfa90: 000000000000001a ffff8f4957fbfbb0 ffff8f4957fbfaa0: ffffffff8393037a #7 [ffff8f4957fbfaa0] stop_two_cpus at ffffffff8393037a ffff8f4957fbfaa8: 0000000100000001 ffff8f1afdf55fe8
dis -l ffffffff8393037a 2 244 : 0xffffffff8393037a <stop_two_cpus+394>: lea 0x48(%rsp),%rsi0xffffffff8393037f <stop_two_cpus+399>: mov %r15,%rdi
说明压栈的是244行的地址,也就是说目前调用的是243行的 __cpu_stop_queue_work。
而后分析对应的入参:
task_numa_env ffff8f4957fbfc30 struct task_numa_env { p = 0xffff8f4aea3a8000, src_cpu = 26, src_nid = 0, dst_cpu = 63, dst_nid = 1, src_stats = { nr_running = 11, load = 556, ---load高 compute_capacity = 18848, ---容量至关 task_capacity = 18, has_free_capacity = 1 dst_stats = { nr_running = 3, load = 111, ---load低,且容量至关,要迁移过来 compute_capacity = 18847, ---容量至关 task_capacity = 18, has_free_capacity = 1 imbalance_pct = 112, idx = 0, best_task = 0xffff8f1ae77dc100, ---要对调的task,是经过 task_numa_find_cpu-->task_numa_compare-->task_numa_assign 来获取的 best_imp = 763, best_cpu = 1---最佳的swap的对象对于1号cpu}
migration_swap_arg ffff8f4957fbfbc0 struct migration_swap_arg { src_task = 0xffff8f4aea3a8000, dst_task = 0xffff8f1ae77dc100, src_cpu = 26, dst_cpu = 1-----选择的dst cpu为1}
根据 cpu_stop_queue_two_works 的代码,它在持有 cpu_stopper:26号cpu锁的状况下,去调用try_to_wake_up ,wake的对象是 用来migrate的 kworker。
static void __cpu_stop_queue_work(struct cpu_stopper *stopper, struct cpu_stop_work *work){ list_add_tail(&work->list, &stopper->works); wake_up_process(stopper->thread);//其实通常就是唤醒 migration}
因为最佳的cpu对象为1,因此须要cpu上的migrate来拉取进程。
p cpu_stopper:1 1) = $33 = { thread = 0xffff8f1bf6bb9040, ----须要唤醒的目的task lock = { { rlock = { raw_lock = { val = { counter = 1 } } } } enabled = true, works = { next = 0xffff8f4957fbfac0, prev = 0xffff8f4957fbfac0 stop_work = { list = { next = 0xffff8f4afbe16000, prev = 0xffff8f4afbe16000 fn = 0xffffffff83952100, arg = 0x0, done = 0xffff8f1ae3647c08 }}kmem 0xffff8f1bf6bb9040 CACHE NAME OBJSIZE ALLOCATED TOTAL SLABS SSIZEffff8eecffc05f00 task_struct 4152 1604 2219 317 32k SLAB MEMORY NODE TOTAL ALLOCATED FREE fffff26501daee00 ffff8f1bf6bb8000 1 7 7 0 FREE / [ALLOCATED] [ffff8f1bf6bb9040]
PID: 14COMMAND: "migration/1"--------------目的task就是对应的cpu上的migration TASK: ffff8f1bf6bb9040 [THREAD_INFO: ffff8f1bf6bc4000] CPU: 1 STATE: TASK_INTERRUPTIBLE (PANIC)
PAGE PHYSICAL MAPPING INDEX CNT FLAGSfffff26501daee40 3076bb9000 0 0 0 6fffff00008000 tail
如今的问题是,虽然咱们知道了当前cpu26号进程在拿了锁的状况下去唤醒1号cpu上的migrate进程,那么为何会迟迟不释放锁,致使1号cpu由于等待该锁时间过长而触发了hardlock的panic呢?
下面就分析,为何它持锁的时间这么长:
#3 [ffff8f1afdf48ef0] end_repeat_nmi at ffffffff83f6bd69 RIP: try_to_wake_up+114] RIP: ffffffff838d63d2 RSP: ffff8f4957fbfa30 RFLAGS: 00000002 RAX: 0000000000000001 RBX: ffff8f1bf6bb9844 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8f1bf6bb9844 RBP: ffff8f4957fbfa70 R8: ffff8f4afbe15ff0 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff8f1bf6bb9040 R14: 0000000000000000 R15: 0000000000000003 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0000<NMI exception stack> --- #4 [ffff8f4957fbfa30] try_to_wake_up at ffffffff838d63d2 ffff8f4957fbfa38: 000000000001ab80 0000000000000086 ffff8f4957fbfa48: ffff8f4afbe15fe0 ffff8f4957fbfb48 ffff8f4957fbfa58: 0000000000000001 ffff8f4afbe15fe0 ffff8f4957fbfa68: ffff8f1afdf55fe0 ffff8f4957fbfa80
dis -l ffffffff838d63d2 1790 : 0xffffffff838d63d2 <try_to_wake_up+114>: mov 0x28(%r13),%eax
1721 static int 1722 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1723 {..... 1787 * If the owning (remote) cpu is still in the middle of schedule() with 1788 * this task as prev, wait until its done referencing the task. 1789 */ 1790 while (p->on_cpu)---------原来循环在此 1791 cpu_relax();..... 1814 return success; 1815 }
咱们用一个简单的图来表示一下这个hardlock:
CPU1 CPU26 schedule(.prev=migrate/1) <fault> pick_next_task() ... idle_balance() migrate_swap() active_balance() stop_two_cpus() spin_lock(stopper0->lock) spin_lock(stopper1->lock) try_to_wake_up pause() -- waits for schedule() stop_one_cpu(1) spin_lock(stopper26->lock) -- waits for stopper lock
查看上游的补丁
static void __cpu_stop_queue_work(struct cpu_stopper *stopper,- struct cpu_stop_work *work)+ struct cpu_stop_work *work,+ struct wake_q_head *wakeq) { list_add_tail(&work->list, &stopper->works);- wake_up_process(stopper->thread);+ wake_q_add(wakeq, stopper->thread); }
3、故障复现
因为这个是一个race condition致使的hardlock,逻辑上分析已经没有问题了,就没有花时间去复现,该环境运行一个dpdk的node,不过为了性能设置了只在一个numa节点上运行,能够频繁形成numa的不均衡,因此要复现的同窗,能够参考单numa节点上运行dpdk来复现,会几率大一些。
4、故障规避或解决
咱们的解决方案是:
1.关闭numa的自动balance.
2.手工合入 linux社区的 0b26351b910f 补丁
3.这个补丁在centos的 3.10.0-974.el7 合入了:
[kernel] stop_machine, sched: Fix migrate_swap() vs. active_balance() deadlock (Phil Auld) [1557061]
同时红帽又反向合入到了3.10.0-957.27.2.el7.x86_64,因此把centos内核升级到 3.10.0-957.27.2.el7.x86_64也是一种选择。
☆ END ☆
OPPO互联网云平台团队招聘一大波岗位,涵盖Java、容器、Linux内核开发、产品经理、项目经理等多个方向,请在公众号后台回复关键词“云招聘”查看查详细信息。
更多技术干货
扫码关注
OPPO互联网技术


本文分享自微信公众号 - OPPO互联网技术(OPPO_tech)。
若有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一块儿分享。