盒马唠机器学习之EM算法

        EM算法是一种迭代的算法,1977年由Dempster等人提出,用于含有隐变量(Hidden Variable)的概率模型参数的极大似然估计,或极大后验概率估计。它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation Maximization Algorithm)。其基本思想是:首先根据己经给出的观测数据,
相关文章
相关标签/搜索