usidc5 |
2011-07-08 22:54 |
2. 同步Timer 本章介绍asio如何在定时器上进行阻塞等待(blocking wait). 实现,咱们包含必要的头文件. 全部的asio类能够简单的经过include "asio.hpp"来调用. #include <iostream> #include <boost/asio.hpp> 此外,这个示例用到了timer,咱们还要包含Boost.Date_Time的头文件来控制时间. #include <boost/date_time/posix_time/posix_time.hpp> 使用asio至少须要一个boost::asio::io_service对象.该类提供了访问I/O的功能.咱们首先在main函数中声明它. int main() { boost::asio::io_service io; 下一步咱们声明boost::asio::deadline_timer对象.这个asio的核心类提供I/O的功能(这里更确切的说是定时功能),老是把一个io_service对象做为他的第一个构造函数,而第二个构造函数的参数设定timer会在5秒后到时(expired). boost::asio::deadline_timer t(io, boost::posix_time::seconds(5)); 这个简单的示例中咱们演示了定时器上的一个阻塞等待.就是说,调用boost::asio::deadline_timer::wait()的在建立后5秒内(注意:不是等待开始后),timer到时以前不会返回任何值. 一个deadline_timer只有两种状态:到时,未到时. 若是boost::asio::deadline_timer::wait()在到时的timer对象上调用,会当即return. t.wait(); 最后,咱们输出理所固然的"Hello, world!"来演示timer到时了. std::cout << "Hello, world! "; return 0; } 完整的代码: #include <iostream> #include <boost/asio.hpp> #include <boost/date_time/posix_time/posix_time.hpp> int main() { boost::asio::io_service io; boost::asio::deadline_timer t(io, boost::posix_time::seconds(5)); t.wait(); std::cout << "Hello, world! "; return 0; }
3. 异步Timer #include <iostream> #include <asio.hpp> #include <boost/date_time/posix_time/posix_time.hpp> asio的异步函数会在一个异步操做完成后被回调.这里咱们定义了一个将被回调的函数. void print(const asio::error& /*e*/) { std::cout << "Hello, world! "; } int main() { asio::io_service io; asio::deadline_timer t(io, boost::posix_time::seconds(5)); 这里咱们调用asio::deadline_timer::async_wait()来异步等待 t.async_wait(print); 最后,咱们必须调用asio::io_service::run(). asio库只会调用那个正在运行的asio::io_service::run()的回调函数. 若是asio::io_service::run()不被调用,那么回调永远不会发生. asio::io_service::run()会持续工做到点,这里就是timer到时,回调完成. 别忘了在调用 asio::io_service::run()以前设置好io_service的任务.好比,这里,若是咱们忘记先调用asio::deadline_timer::async_wait()则asio::io_service::run()会在瞬间return. io.run(); return 0; } 完整的代码: #include <iostream> #include <asio.hpp> #include <boost/date_time/posix_time/posix_time.hpp> void print(const asio::error& /*e*/) { std::cout << "Hello, world! "; } int main() { asio::io_service io; asio::deadline_timer t(io, boost::posix_time::seconds(5)); t.async_wait(print); io.run(); return 0; } 4. 回调函数的参数 这里咱们将每秒回调一次,来演示如何回调函数参数的含义 #include <iostream> #include <asio.hpp> #include <boost/bind.hpp> #include <boost/date_time/posix_time/posix_time.hpp> 首先,调整一下timer的持续时间,开始一个异步等待.显示,回调函数须要访问timer来实现周期运行,因此咱们再介绍两个新参数 指向timer的指针 一个int*来指向计数器 void print(const asio::error& /*e*/, asio::deadline_timer* t, int* count) { 咱们打算让这个函数运行6个周期,然而你会发现这里没有显式的方法来终止io_service.不过,回顾上一节,你会发现当 asio::io_service::run()会在全部任务完成时终止.这样咱们当计算器的值达到5时(0为第一次运行的值),再也不开启一个新的异步等待就能够了. if (*count < 5) { std::cout << *count << " "; ++(*count); ... 而后,咱们推迟的timer的终止时间.经过在原先的终止时间上增长延时,咱们能够确保timer不会在处理回调函数所需时间内的到期. (原文:By calculating the new expiry time relative to the old, we can ensure that the timer does not drift away from the whole-second mark due to any delays in processing the handler.) t->expires_at(t->expires_at() + boost::posix_time::seconds(1)); 而后咱们开始一个新的同步等待.如您所见,咱们用把print和他的多个参数用boost::bind函数合成一个的形为void(const asio::error&)回调函数(准确的说是function object). 在这个例子中, boost::bind的asio::placeholders::error参数是为了给回调函数传入一个error对象.当进行一个异步操做,开始 boost::bind时,你须要使用它来匹配回调函数的参数表.下一节中你会学到回调函数不须要error参数时能够省略它. t->async_wait(boost::bind(print, asio::placeholders::error, t, count)); } } int main() { asio::io_service io; int count = 0; asio::deadline_timer t(io, boost::posix_time::seconds(1)); 和上面同样,咱们再一次使用了绑定asio::deadline_timer::async_wait() t.async_wait(boost::bind(print, asio::placeholders::error, &t, &count)); io.run(); 在结尾,咱们打印出的最后一次没有设置timer的调用的count的值 std::cout << "Final count is " << count << " "; return 0; } 完整的代码: #include <iostream> #include <asio.hpp> #include <boost/bind.hpp> #include <boost/date_time/posix_time/posix_time.hpp> void print(const asio::error& /*e*/, bsp; asio::deadline_timer* t, int* count) { if (*count < 5) { std::cout << *count << " "; ++(*count); t->expires_at(t->expires_at() + boost::posix_time::seconds(1)); t->async_wait(boost::bind(print, asio::placeholders::error, t, count)); } } int main() { asio::io_service io; int count = 0; asio::deadline_timer t(io, boost::posix_time::seconds(1)); t.async_wait(boost::bind(print, asio::placeholders::error, &t, &count)); io.run(); std::cout << "Final count is " << count << " "; return 0; }
5. 成员函数做为回调函数 本例的运行结果和上一节相似 #include <iostream> #include <boost/asio.hpp> #include <boost/bind.hpp> #include <boost/date_time/posix_time/posix_time.hpp> 咱们先定义一个printer类 class printer { public: //构造函数有一个io_service参数,而且在初始化timer_时用到了它.用来计数的count_这里一样做为了成员变量 printer(boost::asio::io_service& io) : timer_(io, boost::posix_time::seconds(1)), count_(0) { boost::bind 一样能够出色的工做在成员函数上.众所周知,全部的非静态成员函数都有一个隐式的this参数,咱们须要把this做为参数bind到成员函数上.和上一节相似,咱们再次用bind构造出void(const boost::asio::error&)形式的函数. 注意,这里没有指定boost::asio::placeholders::error占位符,由于这个print成员函数没有接受一个error对象做为参数. timer_.async_wait(boost::bind(&printer::print, this));
在类的折构函数中咱们输出最后一次回调的count的值 ~printer() { std::cout << "Final count is " << count_ << " "; }
print函数于上一节的十分相似,可是用成员变量取代了参数. void print() { if (count_ < 5) { std::cout << count_ << " "; ++count_; timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1)); timer_.async_wait(boost::bind(&printer::print, this)); } } private: boost::asio::deadline_timer timer_; int count_; };
如今main函数清爽多了,在运行io_service以前只须要简单的定义一个printer对象. int main() { boost::asio::io_service io; printer p(io); io.run(); return 0; } 完整的代码: #include <iostream> #include <boost/asio.hpp> #include <boost/bind.hpp> #include <boost/date_time/posix_time/posix_time.hpp> class printer { public: printer(boost::asio::io_service& io) : timer_(io, boost::posix_time::seconds(1)), count_(0) { timer_.async_wait(boost::bind(&printer::print, this)); } ~printer() { std::cout << "Final count is " << count_ << " "; } void print() { if (count_ < 5) { std::cout << count_ << " "; ++count_; timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1)); timer_.async_wait(boost::bind(&printer::print, this)); } } private: boost::asio::deadline_timer timer_; int count_; }; int main() { boost::asio::io_service io; printer p(io); io.run(); return 0; }
6. 多线程回调同步 本节演示了使用boost::asio::strand在多线程程序中进行回调同步(synchronise). 先前的几节阐明了如何在单线程程序中用boost::asio::io_service::run()进行同步.如您所见,asio库确保 仅当当前线程调用boost::asio::io_service::run()时产生回调.显然,仅在一个线程中调用 boost::asio::io_service::run() 来确保回调是适用于并发编程的. 一个基于asio的程序最好是从单线程入手,可是单线程有以下的限制,这一点在服务器上尤为明显: 当回调耗时较长时,反应迟钝. 在多核的系统上无能为力 若是你发觉你陷入了这种困扰,能够替代的方法是创建一个boost::asio::io_service::run()的线程池.然而这样就容许回调函数并发执行.因此,当回调函数须要访问一个共享,线程不安全的资源时,咱们须要一种方式来同步操做. #include <iostream> #include <boost/asio.hpp> #include <boost/thread.hpp> #include <boost/bind.hpp> #include <boost/date_time/posix_time/posix_time.hpp> 在上一节的基础上咱们定义一个printer类,这次,它将并行运行两个timer class printer { public: 除了声明了一对boost::asio::deadline_timer,构造函数也初始化了类型为boost::asio::strand的strand_成员. boost::asio::strand 能够分配的回调函数.它保证不管有多少线程调用了boost::asio::io_service::run(),下一个回调函数仅在前一个回调函数完成后开始,固然回调函数仍然能够和那些不使用boost::asio::strand分配,或是使用另外一个boost::asio::strand分配的回调函数一块儿并发执行. printer(boost::asio::io_service& io) : strand_(io), timer1_(io, boost::posix_time::seconds(1)), timer2_(io, boost::posix_time::seconds(1)), count_(0) { 当一个异步操做开始时,用boost::asio::strand来 "wrapped(包装)"回调函数.boost::asio::strand::wrap()会返回一个由boost::asio::strand分配的新的handler(句柄),这样,咱们能够确保它们不会同时运行. timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this))); timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this))); } ~printer() { std::cout << "Final count is " << count_ << " "; }
多线程程序中,回调函数在访问共享资源前须要同步.这里共享资源是std::cout 和count_变量. void print1() { if (count_ < 10) { std::cout << "Timer 1: " << count_ << " "; ++count_; timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1)); timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this))); } } void print2() { if (count_ < 10) { std::cout << "Timer 2: " << count_ << " "; ++count_; timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1)); timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this))); } } private: boost::asio::strand strand_; boost::asio::deadline_timer timer1_; boost::asio::deadline_timer timer2_; int count_; }; main函数中boost::asio::io_service::run()在两个线程中被调用:主线程、一个boost::thread线程. 正如单线程中那样,并发的boost::asio::io_service::run()会一直运行直到完成任务.后台的线程将在全部异步线程完成后终结. int main() { boost::asio::io_service io; printer p(io); boost::thread t(boost::bind(&boost::asio::io_service::run, &io)); io.run(); t.join(); return 0; } 完整的代码: #include <iostream> #include <boost/asio.hpp> #include <boost/thread.hpp> #include <boost/bind.hpp> #include <boost/date_time/posix_time/posix_time.hpp> class printer { public: printer(boost::asio::io_service& io) : strand_(io), timer1_(io, boost::posix_time::seconds(1)), timer2_(io, boost::posix_time::seconds(1)), count_(0) { timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this))); timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this))); } ~printer() { std::cout << "Final count is " << count_ << " "; } void print1() { if (count_ < 10) { std::cout << "Timer 1: " << count_ << " "; ++count_; timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1)); timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this))); } } void print2() { if (count_ < 10) { std::cout << "Timer 2: " << count_ << " "; ++count_; timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1)); timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this))); } } private: boost::asio::strand strand_; boost::asio::deadline_timer timer1_; boost::asio::deadline_timer timer2_; int count_; }; int main() { boost::asio::io_service io; printer p(io); boost::thread t(boost::bind(&boost::asio::io_service::run, &io)); io.run(); t.join(); return 0; }
7. TCP客户端:对准时间 #include <iostream> #include <boost/array.hpp> #include <boost/asio.hpp> 本程序的目的是访问一个时间同步服务器,咱们须要用户指定一个服务器(如time-nw.nist.gov),用IP亦可. (译者注:日期查询协议,这种时间传输协议不指定固定的传输格式,只要求按照ASCII标准发送数据。) using boost::asio::ip::tcp; int main(int argc, char* argv[]) { try { if (argc != 2) { std::cerr << "Usage: client <host>" << std::endl; return 1; } 用asio进行网络链接至少须要一个boost::asio::io_service对象 boost::asio::io_service io_service;
咱们须要把在命令行参数中指定的服务器转换为TCP上的节点.完成这项工做须要boost::asio::ip::tcp::resolver对象 tcp::resolver resolver(io_service);
一个resolver对象查询一个参数,并将其转换为TCP上节点的列表.这里咱们把argv[1]中的sever的名字和要查询字串daytime关联. tcp::resolver::query query(argv[1], "daytime");
节点列表能够用 boost::asio::ip::tcp::resolver::iterator 来进行迭代.iterator默认的构造函数生成一个end iterator. tcp::resolver::iterator endpoint_iterator = resolver.resolve(query); tcp::resolver::iterator end; 如今咱们创建一个链接的sockert,因为得到节点既有IPv4也有IPv6的.因此,咱们须要依次尝试他们直到找到一个能够正常工做的.这步使得咱们的程序独立于IP版本 tcp::socket socket(io_service); boost::asio::error error = boost::asio::error::host_not_found; while (error && endpoint_iterator != end) { socket.close(); socket.connect(*endpoint_iterator++, boost::asio::assign_error(error)); } if (error) throw error; 链接完成,咱们须要作的是读取daytime服务器的响应. 咱们用boost::array来保存获得的数据,boost::asio::buffer()会自动根据array的大小暂停工做,来防止缓冲溢出.除了使用boost::array,也能够使用char [] 或std::vector. for (;;) { boost::array<char, 128> buf; boost::asio::error error; size_t len = socket.read_some( boost::asio::buffer(buf), boost::asio::assign_error(error)); 当服务器关闭链接时,boost::asio::ip::tcp::socket::read_some()会用boost::asio::error::eof标志完成, 这时咱们应该退出读取循环了. if (error == boost::asio::error::eof) break; // Connection closed cleanly by peer. else if (error) throw error; // Some other error. std::cout.write(buf.data(), len);
若是发生了什么异常咱们一样会抛出它 } catch (std::exception& e) { std::cerr << e.what() << std::endl; }
运行示例:在windowsXP的cmd窗口下 输入:upload.exe time-a.nist.gov 输出:54031 06-10-23 01:50:45 07 0 0 454.2 UTC(NIST) * 完整的代码: #include <iostream> #include <boost/array.hpp> #include <asio.hpp> using asio::ip::tcp; int main(int argc, char* argv[]) { try { if (argc != 2) { std::cerr << "Usage: client <host>" << std::endl; return 1; } asio::io_service io_service; tcp::resolver resolver(io_service); tcp::resolver::query query(argv[1], "daytime"); tcp::resolver::iterator endpoint_iterator = resolver.resolve(query); tcp::resolver::iterator end; tcp::socket socket(io_service); asio::error error = asio::error::host_not_found; while (error && endpoint_iterator != end) { socket.close(); socket.connect(*endpoint_iterator++, asio::assign_error(error)); } if (error) throw error; for (;;) { boost::array<char, 128> buf; asio::error error; size_t len = socket.read_some( asio::buffer(buf), asio::assign_error(error)); if (error == asio::error::eof) break; // Connection closed cleanly by peer. else if (error) throw error; // Some other error. std::cout.write(buf.data(), len); } } catch (std::exception& e) { std::cerr << e.what() << std::endl; } return 0; }
8. TCP同步时间服务器 #include <ctime> #include <iostream> #include <string> #include <asio.hpp> using asio::ip::tcp; 咱们先定义一个函数返回当前的时间的string形式.这个函数会在咱们全部的时间服务器示例上被使用. std::string make_daytime_string() { using namespace std; // For time_t, time and ctime; time_t now = time(0); return ctime(&now); } int main() { try { asio::io_service io_service; 新建一个asio::ip::tcp::acceptor对象来监听新的链接.咱们监听TCP端口13,IP版本为V4 tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));
这是一个iterative server,也就是说同一时间只能处理一个链接.创建一个socket来表示一个和客户端的链接, 而后等待客户端的链接. for (;;) { tcp::socket socket(io_service); acceptor.accept(socket); 当客户端访问服务器时,咱们获取当前时间,而后返回它. std::string message = make_daytime_string(); asio::write(socket, asio::buffer(message), asio::transfer_all(), asio::ignore_error()); } } 最后处理异常 catch (std::exception& e) { std::cerr << e.what() << std::endl; } return 0;
运行示例:运行服务器,而后运行上一节的客户端,在windowsXP的cmd窗口下 输入:client.exe 127.0.0.1 输出:Mon Oct 23 09:44:48 2006 完整的代码: #include <ctime> #include <iostream> #include <string> #include <asio.hpp> using asio::ip::tcp; std::string make_daytime_string() { using namespace std; // For time_t, time and ctime; time_t now = time(0); return ctime(&now); } int main() { try { asio::io_service io_service; tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13)); for (;;) { tcp::socket socket(io_service); acceptor.accept(socket); std::string message = make_daytime_string(); asio::write(socket, asio::buffer(message), asio::transfer_all(), asio::ignore_error()); } } catch (std::exception& e) { std::cerr << e.what() << std::endl; } return 0; } |
|