上回咱们了解了
vnode
从建立到生成的流程,这回咱们来探索Vue
是如何将vnode
转化成真实的dom
节点/元素javascript
Vue.prototype._update
上次咱们提到的 _render
函数其实做为 _update
函数的参数传入,换句话说,_render
函数结束后 _update
将会执行👇前端
Vue.prototype._update = function (vnode, hydrating) {
var vm = this;
var prevEl = vm.$el;
var prevVnode = vm._vnode;
var restoreActiveInstance = setActiveInstance(vm);
vm._vnode = vnode;
// Vue.prototype.__patch__ is injected in entry points
// based on the rendering backend used.
if (!prevVnode) {
// initial render
vm.$el = vm.__patch__(vm.$el, vnode, hydrating, false /* removeOnly */);
} else {
// updates
vm.$el = vm.__patch__(prevVnode, vnode);
}
restoreActiveInstance();
// update __vue__ reference
if (prevEl) {
prevEl.__vue__ = null;
}
if (vm.$el) {
vm.$el.__vue__ = vm;
}
// if parent is an HOC, update its $el as well
if (vm.$vnode && vm.$parent && vm.$vnode === vm.$parent._vnode) {
vm.$parent.$el = vm.$el;
}
// updated hook is called by the scheduler to ensure that children are
// updated in a parent's updated hook.
};
复制代码
简单梳理下这段代码的逻辑:vue
setActiveInstance(vm)
设置当前的 vm
为活跃的实例preVnode
是否存在,是则调用 vm.$el = vm.__patch__(prevVnode, vnode);
,不然调用 vm.$el = vm.__patch__(vm.$el, vnode, hydrating, false /* removeOnly */);
(其实也就是第一次渲染跟二次更新的区别)restoreActiveInstance()
重置活跃的实例HOC
作了特殊判断(由于没用过 HOC
,因此这里直接略过)从上面整理下来的逻辑中,咱们能获得讯息仅仅只有 setActiveInstance
函数返回一个闭包函数(固然这并非很重要),若是须要更深刻的了解,还须要了解 __patch__
函数是怎么实现的java
其余相关代码:node
updateComponent = function () {
vm._update(vm._render(), hydrating);
};
...
new Watcher(vm, updateComponent, noop, {
before: function before () {
if (vm._isMounted && !vm._isDestroyed) {
callHook(vm, 'beforeUpdate');
}
}
}, true /* isRenderWatcher */);
复制代码
__patch__
说出来你可能不信,__patch__
函数的实现其实很简单👇api
var patch = createPatchFunction({ nodeOps: nodeOps, modules: modules });
...
Vue.prototype.__patch__ = inBrowser ? patch : noop;
复制代码
很明显,createPatchFunction
也是返回了一个闭包函数微信
patch
虽然 __patch__
外表看起来很简单,可是其实内部实现的逻辑仍是挺复杂的,代码量也很是多👇闭包
return function patch (oldVnode, vnode, hydrating, removeOnly) {
if (isUndef(vnode)) {
if (isDef(oldVnode)) { invokeDestroyHook(oldVnode); }
return
}
var isInitialPatch = false;
var insertedVnodeQueue = [];
if (isUndef(oldVnode)) {
// empty mount (likely as component), create new root element
isInitialPatch = true;
createElm(vnode, insertedVnodeQueue);
} else {
var isRealElement = isDef(oldVnode.nodeType);
if (!isRealElement && sameVnode(oldVnode, vnode)) {
// patch existing root node
patchVnode(oldVnode, vnode, insertedVnodeQueue, null, null, removeOnly);
} else {
if (isRealElement) {
// mounting to a real element
// check if this is server-rendered content and if we can perform
// a successful hydration.
if (oldVnode.nodeType === 1 && oldVnode.hasAttribute(SSR_ATTR)) {
oldVnode.removeAttribute(SSR_ATTR);
hydrating = true;
}
if (isTrue(hydrating)) {
if (hydrate(oldVnode, vnode, insertedVnodeQueue)) {
invokeInsertHook(vnode, insertedVnodeQueue, true);
return oldVnode
} else if (process.env.NODE_ENV !== 'production') {
warn(
'The client-side rendered virtual DOM tree is not matching ' +
'server-rendered content. This is likely caused by incorrect ' +
'HTML markup, for example nesting block-level elements inside ' +
'<p>, or missing <tbody>. Bailing hydration and performing ' +
'full client-side render.'
);
}
}
// either not server-rendered, or hydration failed.
// create an empty node and replace it
oldVnode = emptyNodeAt(oldVnode);
}
// replacing existing element
var oldElm = oldVnode.elm;
var parentElm = nodeOps.parentNode(oldElm);
// create new node
createElm(
vnode,
insertedVnodeQueue,
// extremely rare edge case: do not insert if old element is in a
// leaving transition. Only happens when combining transition +
// keep-alive + HOCs. (#4590)
oldElm._leaveCb ? null : parentElm,
nodeOps.nextSibling(oldElm)
);
// update parent placeholder node element, recursively
if (isDef(vnode.parent)) {
var ancestor = vnode.parent;
var patchable = isPatchable(vnode);
while (ancestor) {
for (var i = 0; i < cbs.destroy.length; ++i) {
cbs.destroy[i](ancestor);
}
ancestor.elm = vnode.elm;
if (patchable) {
for (var i$1 = 0; i$1 < cbs.create.length; ++i$1) {
cbs.create[i$1](emptyNode, ancestor);
}
// #6513
// invoke insert hooks that may have been merged by create hooks.
// e.g. for directives that uses the "inserted" hook.
var insert = ancestor.data.hook.insert;
if (insert.merged) {
// start at index 1 to avoid re-invoking component mounted hook
for (var i$2 = 1; i$2 < insert.fns.length; i$2++) {
insert.fns[i$2]();
}
}
} else {
registerRef(ancestor);
}
ancestor = ancestor.parent;
}
}
// destroy old node
if (isDef(parentElm)) {
removeVnodes(parentElm, [oldVnode], 0, 0);
} else if (isDef(oldVnode.tag)) {
invokeDestroyHook(oldVnode);
}
}
}
invokeInsertHook(vnode, insertedVnodeQueue, isInitialPatch);
return vnode.elm
}
复制代码
这么多的代码,一会儿确定是消化不完的,因此咱们能够尝试性的带着如下这几个问题来看👇app
patch
操做与后续的 patch
操做有何区别?dom
节点之间产生变动,或者说是「新节点」替换「老节点」时,规则是怎么样的?patch
函数的特殊逻辑针对初次渲染,patch
函数是作了特殊逻辑的。显然咱们只要把初次执行的 patch
的逻辑走一遍就清楚了👇dom
结合上面的源码,概括下这里的思路:
createElm(vnode, insertVnodeQueue)
来 直接建立「新节点」dom
节点,则分红如下几步:
SSR_ATTR
属性(若存在)hydrating
)
hydrate(oldvnode, vnode, insertVnodeQueue)
并判断是否执行成功
invokeInsertHook(vnode, insertVnodeQueue, true)
emptyNodeAt(oldVnode)
,给「老节点」(其实是 dom
节点)生成它的 "vnode
"看完源码的同窗不难不发现,上面梳理的逻辑里少了这段代码:
if (!isRealElement && sameVnode(oldVnode, vnode)) {
// patch existing root node
patchVnode(oldVnode, vnode, insertedVnodeQueue, null, null, removeOnly);
}
复制代码
也就是对「非 dom
元素的相同节点」作一次 patchVnode
的操做。关于这段代码能够分红几点来分析:
patchVnode
作了什么?根据语义咱们应该看这部分代码👇
function sameVnode (a, b) {
return (
a.key === b.key && (
(
a.tag === b.tag &&
a.isComment === b.isComment &&
isDef(a.data) === isDef(b.data) &&
sameInputType(a, b)
) || (
isTrue(a.isAsyncPlaceholder) &&
a.asyncFactory === b.asyncFactory &&
isUndef(b.asyncFactory.error)
)
)
)
}
复制代码
sameVnode
的逻辑就是:按照 vnode
的属性来判断两个 「vnode
」节点是不是同一个节点
patchVnode
因为执行 patchVnode
的前提就是新老节点是「相同」的节点,咱们有理由相信,它是用来处理同个节点的变化。
function patchVnode ( oldVnode, vnode, insertedVnodeQueue, ownerArray, index, removeOnly ) {
if (oldVnode === vnode) {
return
}
if (isDef(vnode.elm) && isDef(ownerArray)) {
// clone reused vnode
vnode = ownerArray[index] = cloneVNode(vnode);
}
var elm = vnode.elm = oldVnode.elm;
if (isTrue(oldVnode.isAsyncPlaceholder)) {
if (isDef(vnode.asyncFactory.resolved)) {
hydrate(oldVnode.elm, vnode, insertedVnodeQueue);
} else {
vnode.isAsyncPlaceholder = true;
}
return
}
// reuse element for static trees.
// note we only do this if the vnode is cloned -
// if the new node is not cloned it means the render functions have been
// reset by the hot-reload-api and we need to do a proper re-render.
if (isTrue(vnode.isStatic) &&
isTrue(oldVnode.isStatic) &&
vnode.key === oldVnode.key &&
(isTrue(vnode.isCloned) || isTrue(vnode.isOnce))
) {
vnode.componentInstance = oldVnode.componentInstance;
return
}
var i;
var data = vnode.data;
if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) {
i(oldVnode, vnode);
}
var oldCh = oldVnode.children;
var ch = vnode.children;
if (isDef(data) && isPatchable(vnode)) {
for (i = 0; i < cbs.update.length; ++i) { cbs.update[i](oldVnode, vnode); }
if (isDef(i = data.hook) && isDef(i = i.update)) { i(oldVnode, vnode); }
}
if (isUndef(vnode.text)) {
if (isDef(oldCh) && isDef(ch)) {
if (oldCh !== ch) { updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly); }
} else if (isDef(ch)) {
if (process.env.NODE_ENV !== 'production') {
checkDuplicateKeys(ch);
}
if (isDef(oldVnode.text)) { nodeOps.setTextContent(elm, ''); }
addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue);
} else if (isDef(oldCh)) {
removeVnodes(elm, oldCh, 0, oldCh.length - 1);
} else if (isDef(oldVnode.text)) {
nodeOps.setTextContent(elm, '');
}
} else if (oldVnode.text !== vnode.text) {
nodeOps.setTextContent(elm, vnode.text);
}
if (isDef(data)) {
if (isDef(i = data.hook) && isDef(i = i.postpatch)) { i(oldVnode, vnode); }
}
}
复制代码
咱们看看这段代码都作了哪些事情:
vnode
(若是存在 elem
属性)prepatch
(若是存在 data
属性)update
(若是存在 data
属性)oldVnode
和 vnode
两个节点postpatch
(若是存在 data
属性)固然,这里最直观的就是比较 oldVnode
和 vnode
两个节点的逻辑👇
其余的逻辑能够留到下一篇文章再分析~
扫描下方的二维码或搜索「tony老师的前端补习班」关注个人微信公众号,那么就能够第一时间收到个人最新文章。