机器学习实战之树回归

“回归”与“树” 在讲解树回归之前,我们看看回归和树巧妙结合的原因。 线性回归的弊端 线性回归需要拟合所有样本点,在特征多且特征关系复杂时,构建全局模型的想法就显得太难。 实际生活中,问题很大程度上不是线性的,而是非线性的,所以线性回归的很容易欠拟合。 传统决策树弊端与改进 决策树可以解决数据的非线性问题,而且直观易懂,是否可以通过决策树来实现回归任务? 我们来回顾下之前讲过的决策树方法,其在划分
相关文章
相关标签/搜索