Guava Cache用法介绍

Guava Cache是在内存中缓存数据,相比较于数据库或redis存储,访问内存中的数据会更加高效。Guava官网介绍,下面的这几种状况能够考虑使用Guava Cache:redis

  1. 愿意消耗一些内存空间来提高速度。数据库

  2. 预料到某些键会被屡次查询。设计模式

  3. 缓存中存放的数据总量不会超出内存容量。缓存

因此,能够将程序频繁用到的少许数据存储到Guava Cache中,以改善程序性能。下面对Guava Cache的用法进行详细的介绍。多线程

构建缓存对象

接口Cache表明一块缓存,它有以下方法:app

public interface Cache<K, V> {
    V get(K key, Callable<? extends V> valueLoader) throws ExecutionException;

    ImmutableMap<K, V> getAllPresent(Iterable<?> keys);

    void put(K key, V value);

    void putAll(Map<? extends K, ? extends V> m);

    void invalidate(Object key);

    void invalidateAll(Iterable<?> keys);

    void invalidateAll();

    long size();

    CacheStats stats();

    ConcurrentMap<K, V> asMap();

    void cleanUp();
}

能够经过CacheBuilder类构建一个缓存对象,CacheBuilder类采用builder设计模式,它的每一个方法都返回CacheBuilder自己,直到build方法被调用。构建一个缓存对象代码以下。ide

public class StudyGuavaCache {
    public static void main(String[] args) {
        Cache<String,String> cache = CacheBuilder.newBuilder().build();
        cache.put("word","Hello Guava Cache");
        System.out.println(cache.getIfPresent("word"));
    }
}

上面的代码经过CacheBuilder.newBuilder().build()这句代码建立了一个Cache缓存对象,并在缓存对象中存储了key为word,value为Hello Guava Cache的一条记录。能够看到Cache很是相似于JDK中的Map,可是相比于Map,Guava Cache提供了不少更强大的功能。性能

设置最大存储

Guava Cache能够在构建缓存对象时指定缓存所可以存储的最大记录数量。当Cache中的记录数量达到最大值后再调用put方法向其中添加对象,Guava会先从当前缓存的对象记录中选择一条删除掉,腾出空间后再将新的对象存储到Cache中。ui

public class StudyGuavaCache {
    public static void main(String[] args) {
        Cache<String,String> cache = CacheBuilder.newBuilder()
                .maximumSize(2)
                .build();
        cache.put("key1","value1");
        cache.put("key2","value2");
        cache.put("key3","value3");
        System.out.println("第一个值:" + cache.getIfPresent("key1"));
        System.out.println("第二个值:" + cache.getIfPresent("key2"));
        System.out.println("第三个值:" + cache.getIfPresent("key3"));
    }
}

上面代码在构造缓存对象时,经过CacheBuilder类的maximumSize方法指定Cache最多能够存储两个对象,而后调用Cache的put方法向其中添加了三个对象。程序执行结果以下图所示,能够看到第三条对象记录的插入,致使了第一条对象记录被删除。
图片描述spa

设置过时时间

在构建Cache对象时,能够经过CacheBuilder类的expireAfterAccess和expireAfterWrite两个方法为缓存中的对象指定过时时间,过时的对象将会被缓存自动删除。其中,expireAfterWrite方法指定对象被写入到缓存后多久过时,expireAfterAccess指定对象多久没有被访问后过时。

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String,String> cache = CacheBuilder.newBuilder()
                .maximumSize(2)
                .expireAfterWrite(3,TimeUnit.SECONDS)
                .build();
        cache.put("key1","value1");
        int time = 1;
        while(true) {
            System.out.println("第" + time++ + "次取到key1的值为:" + cache.getIfPresent("key1"));
            Thread.sleep(1000);
        }
    }
}

上面的代码在构造Cache对象时,经过CacheBuilder的expireAfterWrite方法指定put到Cache中的对象在3秒后会过时。在Cache对象中存储一条对象记录后,每隔1秒读取一次这条记录。程序运行结果以下图所示,能够看到,前三秒能够从Cache中获取到对象,超过三秒后,对象从Cache中被自动删除。
图片描述

下面代码是expireAfterAccess的例子。

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String,String> cache = CacheBuilder.newBuilder()
                .maximumSize(2)
                .expireAfterAccess(3,TimeUnit.SECONDS)
                .build();
        cache.put("key1","value1");
        int time = 1;
        while(true) {
            Thread.sleep(time*1000);
            System.out.println("睡眠" + time++ + "秒后取到key1的值为:" + cache.getIfPresent("key1"));
        }
    }
}

经过CacheBuilder的expireAfterAccess方法指定Cache中存储的对象若是超过3秒没有被访问就会过时。while中的代码每sleep一段时间就会访问一次Cache中存储的对象key1,每次访问key1以后下次sleep的时间会加长一秒。程序运行结果以下图所示,从结果中能够看出,当超过3秒没有读取key1对象以后,该对象会自动被Cache删除。
图片描述

也能够同时用expireAfterAccess和expireAfterWrite方法指定过时时间,这时只要对象知足二者中的一个条件就会被自动过时删除。

弱引用

能够经过weakKeys和weakValues方法指定Cache只保存对缓存记录key和value的弱引用。这样当没有其余强引用指向key和value时,key和value对象就会被垃圾回收器回收。

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String,Object> cache = CacheBuilder.newBuilder()
                .maximumSize(2)
                .weakValues()
                .build();
        Object value = new Object();
        cache.put("key1",value);

        value = new Object();//原对象再也不有强引用
        System.gc();
        System.out.println(cache.getIfPresent("key1"));
    }
}

上面代码的打印结果是null。构建Cache时经过weakValues方法指定Cache只保存记录值的一个弱引用。当给value引用赋值一个新的对象以后,就再也不有任何一个强引用指向原对象。System.gc()触发垃圾回收后,原对象就被清除了。

显示清除

能够调用Cache的invalidateAll或invalidate方法显示删除Cache中的记录。invalidate方法一次只能删除Cache中一个记录,接收的参数是要删除记录的key。invalidateAll方法能够批量删除Cache中的记录,当没有传任何参数时,invalidateAll方法将清除Cache中的所有记录。invalidateAll也能够接收一个Iterable类型的参数,参数中包含要删除记录的全部key值。下面代码对此作了示例。

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String,String> cache = CacheBuilder.newBuilder().build();
        Object value = new Object();
        cache.put("key1","value1");
        cache.put("key2","value2");
        cache.put("key3","value3");

        List<String> list = new ArrayList<String>();
        list.add("key1");
        list.add("key2");

        cache.invalidateAll(list);//批量清除list中所有key对应的记录
        System.out.println(cache.getIfPresent("key1"));
        System.out.println(cache.getIfPresent("key2"));
        System.out.println(cache.getIfPresent("key3"));
    }
}

代码中构造了一个集合list用于保存要删除记录的key值,而后调用invalidateAll方法批量删除key1和key2对应的记录,只剩下key3对应的记录没有被删除。

移除监听器

能够为Cache对象添加一个移除监听器,这样当有记录被删除时能够感知到这个事件。

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        RemovalListener<String, String> listener = new RemovalListener<String, String>() {
            public void onRemoval(RemovalNotification<String, String> notification) {
                System.out.println("[" + notification.getKey() + ":" + notification.getValue() + "] is removed!");
            }
        };
        Cache<String,String> cache = CacheBuilder.newBuilder()
                .maximumSize(3)
                .removalListener(listener)
                .build();
        Object value = new Object();
        cache.put("key1","value1");
        cache.put("key2","value2");
        cache.put("key3","value3");
        cache.put("key4","value3");
        cache.put("key5","value3");
        cache.put("key6","value3");
        cache.put("key7","value3");
        cache.put("key8","value3");
    }
}

removalListener方法为Cache指定了一个移除监听器,这样当有记录从Cache中被删除时,监听器listener就会感知到这个事件。程序运行结果以下图所示。
图片描述

自动加载

Cache的get方法有两个参数,第一个参数是要从Cache中获取记录的key,第二个记录是一个Callable对象。当缓存中已经存在key对应的记录时,get方法直接返回key对应的记录。若是缓存中不包含key对应的记录,Guava会启动一个线程执行Callable对象中的call方法,call方法的返回值会做为key对应的值被存储到缓存中,而且被get方法返回。下面是一个多线程的例子:

public class StudyGuavaCache {

    private static Cache<String,String> cache = CacheBuilder.newBuilder()
            .maximumSize(3)
            .build();

    public static void main(String[] args) throws InterruptedException {

        new Thread(new Runnable() {
            public void run() {
                System.out.println("thread1");
                try {
                    String value = cache.get("key", new Callable<String>() {
                        public String call() throws Exception {
                            System.out.println("load1"); //加载数据线程执行标志
                            Thread.sleep(1000); //模拟加载时间
                            return "auto load by Callable";
                        }
                    });
                    System.out.println("thread1 " + value);
                } catch (ExecutionException e) {
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            public void run() {
                System.out.println("thread2");
                try {
                    String value = cache.get("key", new Callable<String>() {
                        public String call() throws Exception {
                            System.out.println("load2"); //加载数据线程执行标志
                            Thread.sleep(1000); //模拟加载时间
                            return "auto load by Callable";
                        }
                    });
                    System.out.println("thread2 " + value);
                } catch (ExecutionException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

这段代码中有两个线程共享同一个Cache对象,两个线程同时调用get方法获取同一个key对应的记录。因为key对应的记录不存在,因此两个线程都在get方法处阻塞。此处在call方法中调用Thread.sleep(1000)模拟程序从外存加载数据的时间消耗。代码的执行结果以下图:
图片描述

从结果中能够看出,虽然是两个线程同时调用get方法,但只有一个get方法中的Callable会被执行(没有打印出load2)。Guava能够保证当有多个线程同时访问Cache中的一个key时,若是key对应的记录不存在,Guava只会启动一个线程执行get方法中Callable参数对应的任务加载数据存到缓存。当加载完数据后,任何线程中的get方法都会获取到key对应的值。

统计信息

能够对Cache的命中率、加载数据时间等信息进行统计。在构建Cache对象时,能够经过CacheBuilder的recordStats方法开启统计信息的开关。开关开启后Cache会自动对缓存的各类操做进行统计,调用Cache的stats方法能够查看统计后的信息。

public class StudyGuavaCache {
    public static void main(String[] args) throws InterruptedException {
        Cache<String,String> cache = CacheBuilder.newBuilder()
                .maximumSize(3)
                .recordStats() //开启统计信息开关
                .build();
        cache.put("key1","value1");
        cache.put("key2","value2");
        cache.put("key3","value3");
        cache.put("key4","value4");

        cache.getIfPresent("key1");
        cache.getIfPresent("key2");
        cache.getIfPresent("key3");
        cache.getIfPresent("key4");
        cache.getIfPresent("key5");
        cache.getIfPresent("key6");

        System.out.println(cache.stats()); //获取统计信息
    }
}

程序执行结果以下图所示:
图片描述

这些统计信息对于调整缓存设置是相当重要的,在性能要求高的应用中应该密切关注这些数据

LoadingCache

LoadingCache是Cache的子接口,相比较于Cache,当从LoadingCache中读取一个指定key的记录时,若是该记录不存在,则LoadingCache能够自动执行加载数据到缓存的操做。LoadingCache接口的定义以下:

public interface LoadingCache<K, V> extends Cache<K, V>, Function<K, V> {

    V get(K key) throws ExecutionException;

    V getUnchecked(K key);

    ImmutableMap<K, V> getAll(Iterable<? extends K> keys) throws ExecutionException;

    V apply(K key);

    void refresh(K key);

    @Override
    ConcurrentMap<K, V> asMap();
}

与构建Cache类型的对象相似,LoadingCache类型的对象也是经过CacheBuilder进行构建,不一样的是,在调用CacheBuilder的build方法时,必须传递一个CacheLoader类型的参数,CacheLoader的load方法须要咱们提供实现。当调用LoadingCache的get方法时,若是缓存不存在对应key的记录,则CacheLoader中的load方法会被自动调用从外存加载数据,load方法的返回值会做为key对应的value存储到LoadingCache中,并从get方法返回。

public class StudyGuavaCache {
    public static void main(String[] args) throws ExecutionException {
        CacheLoader<String, String> loader = new CacheLoader<String, String> () {
            public String load(String key) throws Exception {
                Thread.sleep(1000); //休眠1s,模拟加载数据
                System.out.println(key + " is loaded from a cacheLoader!");
                return key + "'s value";
            }
        };

        LoadingCache<String,String> loadingCache = CacheBuilder.newBuilder()
                .maximumSize(3)
                .build(loader);//在构建时指定自动加载器

        loadingCache.get("key1");
        loadingCache.get("key2");
        loadingCache.get("key3");
    }
}

程序执行结果以下图所示:
图片描述

相关文章
相关标签/搜索