文章题目:Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissuespa
特色: 能够检测配对样本,也能够检测带reference的tumor样本。可是没有考虑肿瘤异质性问题。使用DNAcopy包的CBS分割,control-freec的GC校订方法。bin size=200bp。code
http://patchwork.r-forge.r-project.org/#tabr10orm
Patchwork的输入:blog
1),An aligned and sorted tumor BAM file. (.bai, pileup of bam, .vcf)ip
2)a reference or matched normal BAMfileci
安装:get
install.packages("patchworkCG", repos="http://R-Forge.R-project.org") library(patchworkCG) #产生输入文件: Samtools sort <tumorfile>.bam <tumorfile.sorted>.bam Samtools index <tumor_or_normalfile>.bam Samtools mpileup -f <humangenome>.fasta <tumor_or_normal>.bam > mpileup Samtools mpileup -uf <humangenome>.fasta <tumor_or_normal>.bam | bcftools view -bvcg > <unfiltered_output>.bcf Bcftools view <unfiltered_output>.bcf | vafutils.pl varFilter -D100 > <output>.vcf 方法流程: Library(patchwork) Library(patchworkData) ?patchwork.plot patchwork.plot(Tumor.bam="patchwork.example.bam",Tumor.pileup="patchwork.example.pileup",Reference="../HCC1954/datasolexa.RData") ###To infer the arguments for patchwork.copynumbers() you will need to look at one of the chromosomal plots generated using patchwork.plot(). The structure and relationships in the plot can be interpreted to figure out the most probable locations of the allele-specific copy numbers patchwork.copynumbers(CNfile=”path/to/prefix_copynumbers.Rdata”,cn2=0.8,delta=0.28,het=0.21,hom=0.79)