Twitter的分布式雪花算法 SnowFlake 每秒自增生成26个万个可排序的ID (Java版)

概述

分布式系统中,有一些须要使用全局惟一ID的场景,这种时候为了防止ID冲突可使用36位的UUID,可是UUID有一些缺点,首先他相对比较长,另外UUID通常是无序的。java

有些时候咱们但愿能使用一种简单一些的ID,而且但愿ID可以按照时间有序生成。git

而twitter的SnowFlake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,由于Cassandra没有顺序ID生成机制,因此开发了这样一套全局惟一ID生成服务。github

原理

Twitter的雪花算法SnowFlake,使用Java语言实现。算法

SnowFlake算法产生的ID是一个64位的整型,结构以下(每一部分用“-”符号分隔):spring

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
复制代码

1位标识部分,在java中因为long的最高位是符号位,正数是0,负数是1,通常生成的ID为正数,因此为0;数据库

41位时间戳部分,这个是毫秒级的时间,通常实现上不会存储当前的时间戳,而是时间戳的差值(当前时间-固定的开始时间),这样可使产生的ID从更小值开始;41位的时间戳可使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年;bash

10位节点部分,Twitter实现中使用前5位做为数据中心标识,后5位做为机器标识,能够部署1024个节点;less

12位序列号部分,支持同一毫秒内同一个节点能够生成4096个ID;分布式

SnowFlake算法生成的ID大体上是按照时间递增的,用在分布式系统中时,须要注意数据中心标识和机器标识必须惟一,这样就能保证每一个节点生成的ID都是惟一的。或许咱们不必定都须要像上面那样使用5位做为数据中心标识,5位做为机器标识,能够根据咱们业务的须要,灵活分配节点部分,如:若不须要数据中心,彻底可使用所有10位做为机器标识;若数据中心很少,也能够只使用3位做为数据中心,7位做为机器标识。spring-boot

snowflake生成的ID总体上按照时间自增排序,而且整个分布式系统内不会产生ID碰撞(由datacenter和workerId做区分),而且效率较高。听说:snowflake每秒可以产生26万个ID。

源码

本机实测:100万个ID 耗时5秒

/** * 描述: Twitter的分布式自增ID雪花算法snowflake (Java版) * https://github.com/souyunku/SnowFlake * * @author yanpenglei * @create 2018-03-13 12:37 **/
public class SnowFlake {

    /** * 起始的时间戳 */
    private final static long START_STMP = 1480166465631L;

    /** * 每一部分占用的位数 */
    private final static long SEQUENCE_BIT = 12; //序列号占用的位数
    private final static long MACHINE_BIT = 5;   //机器标识占用的位数
    private final static long DATACENTER_BIT = 5;//数据中心占用的位数

    /** * 每一部分的最大值 */
    private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

    /** * 每一部分向左的位移 */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

    private long datacenterId;  //数据中心
    private long machineId;     //机器标识
    private long sequence = 0L; //序列号
    private long lastStmp = -1L;//上一次时间戳

    public SnowFlake(long datacenterId, long machineId) {
        if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
            throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
        }
        this.datacenterId = datacenterId;
        this.machineId = machineId;
    }

    /** * 产生下一个ID * * @return */
    public synchronized long nextId() {
        long currStmp = getNewstmp();
        if (currStmp < lastStmp) {
            throw new RuntimeException("Clock moved backwards. Refusing to generate id");
        }

        if (currStmp == lastStmp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currStmp = getNextMill();
            }
        } else {
            //不一样毫秒内,序列号置为0
            sequence = 0L;
        }

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
                | datacenterId << DATACENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    }

    private long getNextMill() {
        long mill = getNewstmp();
        while (mill <= lastStmp) {
            mill = getNewstmp();
        }
        return mill;
    }

    private long getNewstmp() {
        return System.currentTimeMillis();
    }

    public static void main(String[] args) {
        SnowFlake snowFlake = new SnowFlake(2, 3);

        long start = System.currentTimeMillis();
        for (int i = 0; i < 1000000; i++) {
            System.out.println(snowFlake.nextId());
        }

        System.out.println(System.currentTimeMillis() - start);


    }
}
复制代码

循环生成的ID,运行结果以下:

170916032679263329
170916032679263330
170916032679263331
170916032679263332
170916032679263333
170916032679263334
170916032679263335
170916032679263336
170916032679263337
170916032679263338
170916032679263339
170916032679263340
170916032679263341
170916032679263342
复制代码

开源地址

Github:github.com/souyunku/Sn…

推荐阅读

Spring Cloud 系列教程

Spring Boot 系列教程

源码 + 教程

Github:github.com/souyunku/sp…

Spring Cloud 系列教程
Spring Cloud 系列教程

Docker 容器

环境搭建

Contact

  • 做者:鹏磊
  • 出处:www.ymq.io
  • 版权归做者全部,转载请注明出处
  • Wechat:关注公众号,搜云库,专一于开发技术的研究与知识分享

关注公众号-搜云库
搜云库
相关文章
相关标签/搜索