python10min手写一个服务器内存监控系统

简易的内存监控系统

本文须要有必定的python和前端基础,若是没基础的,请关注我后续的基础教程系列博客javascript

文章源地址,还能够看到具体的代码,喜欢请加个星星html

腾讯视频连接

录制中间网出问题了,重启了一下,因此有两部分前端

本文的目的在于,尽量用简单的代码,让你们了解内存监控的原理
主题思路mysql

  • 获取内存信息jquery

  • 存储信息git

  • 展示github

  • 后续扩展web

    • 加主机名,monitor部署在多台机器,不直接插数据库

    • 经过http请求的方式,一台机器起flask专门存数据monitor

思路图

第一步,咱们须要获取内存信息

其实全部的监控项,包括内存数据,都是从文件中读取的,你们执行如下 cat /proc/meminfo就能够看到关于内存的信息,咱们关注的是前四行,总内存,空闲内存,缓冲和缓存大小

计算内存占用量公式:

(总内存-空闲内存-缓冲-缓存)/1024Mb

代码呼之欲出 monitor.py

用with打开文件,能够自动关闭,比直接open优雅那么一丢丢

def getMem():
    with open('/proc/meminfo') as f:
        total = int(f.readline().split()[1])
        free = int(f.readline().split()[1])
        buffers = int(f.readline().split()[1])
        cache = int(f.readline().split()[1])
    mem_use = total-free-buffers-cache
    print mem_use/1024
while True:
    time.sleep(1)
    getMem()

执行文件 python monitor.py,每一秒打印一条内存信息

[woniu@teach memory]$ python mointor.py 
2920
2919
2919
2919
2919

咱们能够写个很搓的测试代码,占用一点内存,看看数据会不会变
执行下面代码,能看到内存使用量明显多了几M

# test.py

s = 'akdsakjhdjkashdjkhasjkdhasjkdhkjashdaskjhfoopnnm,ioqouiew'*100000

for i in s:
    for j in s:
        s.count(j)

获取内存数据done!

第二步存储数据库

咱们选用mysql

新建表格,咱们须要两个字段,内存和时间 sql呼之欲出,简单粗暴

create memory(memory int,time int)

咱们的 monitor.py就不能只打印内存信息了,要存储数据库啦,引入mysql模块,代码以下

import time
import MySQLdb as mysql

db = mysql.connect(user="reboot",passwd="reboot123",db="memory",host="localhost")
db.autocommit(True)
cur = db.cursor()

def getMem():
    with open('/proc/meminfo') as f:
        total = int(f.readline().split()[1])
        free = int(f.readline().split()[1])
        buffers = int(f.readline().split()[1])
        cache = int(f.readline().split()[1])
    mem_use = total-free-buffers-cache
    t = int(time.time())
    sql = 'insert into memory (memory,time) value (%s,%s)'%(mem_use/1024,t)
    cur.execute(sql)
    print mem_use/1024
    #print 'ok'
while True:
    time.sleep(1)
    getMem()

比以前的多了拼接sql和执行的步骤,具体过程见视频,你们到数据库里执行一下下面的sql,就能看到咱们辛辛苦苦获取的内存数据啦

select * from memory

咱们的数据库里数据愈来愈多,怎么展现呢

咱们须要flask
咱们看下文件结构

.
├── flask_web.py web后端代码
├── mointor.py 监控数据获取
├── static 静态文件,第三方图表库
│   ├── exporting.js
│   ├── highstock.js
│   └── jquery.js
├── templates
│   └── index.html 展现前端页面
└── test.py 占用内存的测试代码

flask_web就是咱们的web服务代码,template下面的html,就是前端展现的文件,static下面是第三方库

flask_web的代码以下

  • 提供两个路由

    • 根目录渲染文件index.html

    • /data路由去数据库插数据,返回json,供画图使用

from flask import Flask,render_template,request
import MySQLdb as mysql

con = mysql.connect(user='reboot',passwd='reboot123',host='localhost',db='memory')

con.autocommit(True)
cur = con.cursor()
app = Flask(__name__)
import json

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/data')
def data():
    sql = 'select * from memory'
    cur.execute(sql)
    arr = []
    for i in cur.fetchall():
        arr.append([i[1]*1000,i[0]])
    return json.dumps(arr)

if __name__=='__main__':
    app.run(host='0.0.0.0',port=9092,debug=True)

前端index.html
highstock的demo页面,copy过来,具体过程见视频

<html>
<head>
<title>51reboot</title>
</head>

<body>
hello world

<div id="container" style="height: 400px; min-width: 310px"></div>

<script src='/static/jquery.js'></script>
<script src='/static/highstock.js'></script>
<script src='/static/exporting.js'></script>
<script>
$(function () {
    // 使用当前时区,不然东八区会差八个小时
    Highcharts.setOptions({
        global: {
            useUTC: false
        }
    });
    $.getJSON('/data', function (data) {
        // Create the chart
        $('#container').highcharts('StockChart', {
            rangeSelector : {
                selected : 1
            },
            title : {
                text : '内存数据'
            },
            series : [{
                name : '本机内存',
                data : data,
                tooltip: {
                    valueDecimals: 2
                }
            }]
        });
    });
});
</script>
</body>
</html>

具体观察数据结构的过程,见视频和demo连接,咱们作的 就是把数据库里的数据,拼接成前端画图须要的数据,展示出来

这时候前端就能看到图表啦

咱们并不只限于此,若是想实时的看到内存,应该怎么搞呢

  • 查询数据时候增长一个时间戳当限制条件,再次查询时,只返回两次查询之间的增量数据

  • 前端动态添加增量结点数据到图表中

  • 代码呼之欲出

python

tmp_time = 0

@app.route('/data')
def data():
    global tmp_time
    if tmp_time>0:
        sql = 'select * from memory where time>%s' % (tmp_time/1000)
    else:
        sql = 'select * from memory'
    cur.execute(sql)
    arr = []
    for i in cur.fetchall():
        arr.append([i[1]*1000,i[0]])
    if len(arr)>0:
        tmp_time = arr[-1][0]
    return json.dumps(arr)

前端,3秒查一次增量数据

$.getJSON('/data', function (data) {

        // Create the chart
        $('#container').highcharts('StockChart', {
        chart:{
        events:{
            load:function(){
                var series = this.series[0]
                setInterval(function(){
                $.getJSON('/data',function(res){
                    $.each(res,function(i,v){
                        series.addPoint(v)
                    })
                })
                },3000)
            }
        }
        },
            rangeSelector : {
                selected : 1
            },
            title : {
                text : 'AAPL Stock Price'
            },
            series : [{
                name : 'AAPL',
                data : data,
                tooltip: {
                    valueDecimals: 2
                }
            }]
        });
    });

done!两个文件都搞定,double kill!
效果

最终代码直接下载那个木看也行

监控文件monitor.py

import time
import MySQLdb as mysql

db = mysql.connect(user="reboot",passwd="reboot123",db="memory",host="localhost")
db.autocommit(True)
cur = db.cursor()

def getMem():
    f = open('/proc/meminfo')
    total = int(f.readline().split()[1])
    free = int(f.readline().split()[1])
    buffers = int(f.readline().split()[1])
    cache = int(f.readline().split()[1])
    mem_use = total-free-buffers-cache
    t = int(time.time())
    sql = 'insert into memory (memory,time) value (%s,%s)'%(mem_use/1024,t)
    cur.execute(sql)
    print mem_use/1024
    #print 'ok'
while True:
    time.sleep(1)
    getMem()

flask

from flask import Flask,render_template,request
import MySQLdb as mysql

con = mysql.connect(user='reboot',passwd='reboot123',host='localhost',db='memory')
con.autocommit(True)
cur = con.cursor()
app = Flask(__name__)
import json

@app.route('/')
def index():
    return render_template('index.html')

tmp_time = 0

@app.route('/data')
def data():
    global tmp_time
    if tmp_time>0:
        sql = 'select * from memory where time>%s' % (tmp_time/1000)
    else:
        sql = 'select * from memory'
    cur.execute(sql)
    arr = []
    for i in cur.fetchall():
        arr.append([i[1]*1000,i[0]])
    if len(arr)>0:
        tmp_time = arr[-1][0]
    return json.dumps(arr)

if __name__=='__main__':
    app.run(host='0.0.0.0',port=9092,debug=True)

前端

<html>
<head>
<title>51reboot</title>
<meta charset='utf-8'>
</head>

<body>
hello world

<div id="container" style="height: 400px; min-width: 310px"></div>

<script src='/static/jquery.js'></script>
<script src='/static/highstock.js'></script>
<script src='/static/exporting.js'></script>
<script>
$(function () {
    // 使用当前时区,不然东八区会差八个小时
    Highcharts.setOptions({
        global: {
            useUTC: false
        }
    });
    $.getJSON('/data', function (data) {

        // Create the chart
        $('#container').highcharts('StockChart', {
        chart:{
        events:{
        
            load:function(){
            
                var series = this.series[0]
                setInterval(function(){
                $.getJSON('/data',function(res){
                    $.each(res,function(i,v){
                        series.addPoint(v)
                    })
                })
                },3000)
            }
        }
        },

            rangeSelector : {
                selected : 1
            },

            title : {
                text : '内存数据'
            },

            series : [{
                name : '本机内存',
                data : data,
                tooltip: {
                    valueDecimals: 2
                }
            }]
        });
    });

});
</script>

</body>
</html>

代码没有特别注意细节,但愿你们喜欢。


欢迎你们关注我的公共号,高品质运维开发

相关文章
相关标签/搜索