Doris 这类 MPP 架构的 OLAP 数据库,一般都是经过提升并发,来处理大量数据的。本质上,Doris 的数据存储在相似 SSTable(Sorted String Table)的数据结构中。该结构是一种有序的数据结构,能够按照指定的列进行排序存储。在这种数据结构上,以排序列做为条件进行查找,会很是的高效。html
Count(*)
语法方面,原生的方式性能不是特别高,须要自行优化(http://doris.apache.org/docum...)在 Doris 中,数据以表(Table)的形式进行逻辑上的描述。一张表包括行(Row)和列(Column)。Row 即用户的一行数据。Column 用于描述一行数据中不一样的字段。sql
Column 能够分为两大类:Key 和 Value。从业务角度看,Key 和 Value 能够分别对应维度列和指标列。docker
Doris 的数据模型主要分为3类:数据库
在 Doris 经过 key 来来决定 value 的聚合粒度大小。apache
CREATE TABLE IF NOT EXISTS example_db.expamle_tbl ( `user_id` LARGEINT NOT NULL COMMENT "用户id", `date` DATE NOT NULL COMMENT "数据灌入日期时间", `city` VARCHAR(20) COMMENT "用户所在城市", `age` SMALLINT COMMENT "用户年龄", `sex` TINYINT COMMENT "用户性别", `last_visit_date` DATETIME REPLACE DEFAULT "1970-01-01 00:00:00" COMMENT "用户最后一次访问时间", `cost` BIGINT SUM DEFAULT "0" COMMENT "用户总消费", `max_dwell_time` INT MAX DEFAULT "0" COMMENT "用户最大停留时间", `min_dwell_time` INT MIN DEFAULT "99999" COMMENT "用户最小停留时间", ) AGGREGATE KEY(`user_id`, `date`, `timestamp`, `city`, `age`, `sex`) ... /* 省略 Partition 和 Distribution 信息 */ ;
像带有 REPLACE、SUM、MAX、MIN 这种标记的字段都是属于 value,user_id
, date
, timestamp
, city
, age
, sex
则为key。数据结构
这类数据没有聚合需求,只需保证主键惟一性。架构
CREATE TABLE IF NOT EXISTS example_db.expamle_tbl ( `user_id` LARGEINT NOT NULL COMMENT "用户id", `username` VARCHAR(50) NOT NULL COMMENT "用户昵称", `city` VARCHAR(20) COMMENT "用户所在城市", `age` SMALLINT COMMENT "用户年龄", `sex` TINYINT COMMENT "用户性别", `phone` LARGEINT COMMENT "用户电话", `address` VARCHAR(500) COMMENT "用户地址", `register_time` DATETIME COMMENT "用户注册时间" ) UNIQUE KEY(`user_id`, `user_name`) ... /* 省略 Partition 和 Distribution 信息 */ ;
在某些多维分析场景下,数据既没有主键,也没有聚合需求。所以,咱们引入 Duplicate 数据模型来知足这类需求。并发
这种数据模型区别于 Aggregate 和 Uniq 模型。数据彻底按照导入文件中的数据进行存储,不会有任何聚合。即便两行数据彻底相同,也都会保留。 而在建表语句中指定的 DUPLICATE KEY,只是用来指明底层数据按照那些列进行排序。分布式
在 DUPLICATE KEY 的选择上,咱们建议适当的选择前 2-4 列就能够。高并发
CREATE TABLE IF NOT EXISTS example_db.expamle_tbl ( `timestamp` DATETIME NOT NULL COMMENT "日志时间", `type` INT NOT NULL COMMENT "日志类型", `error_code` INT COMMENT "错误码", `error_msg` VARCHAR(1024) COMMENT "错误详细信息", `op_id` BIGINT COMMENT "负责人id", `op_time` DATETIME COMMENT "处理时间" ) DUPLICATE KEY(`timestamp`, `type`) ... /* 省略 Partition 和 Distribution 信息 */ ;
由于数据模型在建表时就已经肯定,且没法修改。因此,选择一个合适的数据模型很是重要。
在 Aggregate、Uniq 和 Duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,AGGREGATE KEY、UNIQ KEY 和 DUPLICATE KEY 中指定的列进行排序存储的。
而前缀索引,即在排序的基础上,实现的一种根据给定前缀列,快速查询数据的索引方式。
咱们将一行数据的前 36 个字节 做为这行数据的前缀索引。当遇到 VARCHAR 类型时,前缀索引会直接截断。咱们举例说明:
ColumnName | Type |
---|---|
user_id | BIGINT |
age | INT |
message | VARCHAR(100) |
max_dwell_time | DATETIME |
min_dwell_time | DATETIME |
ColumnName | Type |
---|---|
user_name | VARCHAR(20) |
age | INT |
message | VARCHAR(100) |
max_dwell_time | DATETIME |
min_dwell_time | DATETIME |
当咱们的查询条件,是前缀索引的前缀时,能够极大的加快查询速度。好比在第一个例子中,咱们执行以下查询:
SELECT * FROM table WHERE user_id=1829239 and age=20;
该查询的效率会远高于以下查询:
SELECT * FROM table WHERE age=20;
因此在建表时,正确的选择列顺序,可以极大地提升查询效率。
ROLLUP 在多维分析中是“上卷”的意思,即将数据按某种指定的粒度进行进一步聚合。
在 Doris 中,咱们将用户经过建表语句建立出来的表成为 Base 表(Base Table)。Base 表中保存着按用户建表语句指定的方式存储的基础数据。
在 Base 表之上,咱们能够建立任意多个 ROLLUP 表。这些 ROLLUP 的数据是基于 Base 表产生的,而且在物理上是独立存储的。
ROLLUP 表的基本做用,在于在 Base 表的基础上,得到更粗粒度的聚合数据。
Rollup 本质上能够理解为原始表(Base Table)的一个物化索引。创建 Rollup 时可只选取 Base Table 中的部分列做为 Schema。Schema 中的字段顺序也可与 Base Table 不一样。
ROLLUP 建立完成以后的触发是程序自动的,不须要任何其余指定或者配置。
例如:建立了 user_id (key),cost(value)格式的 rollup 时,当执行下方语句时,就会触发。
SELECT user_id, sum(cost) FROM table GROUP BY user_id;
Aggregate 和 Uniq 两种数据存储格式时,使用 rollup 会改变聚合数据的粒度,但对于 Duplicate 只是调整前缀索引。
由于建表时已经指定了列顺序,因此一个表只有一种前缀索引。这对于使用其余不能命中前缀索引的列做为条件进行的查询来讲,效率上可能没法知足需求。所以,咱们能够经过建立 ROLLUP 来人为的调整列顺序。举例说明。
Base 表结构以下:
ColumnName | Type |
---|---|
user_id | BIGINT |
age | INT |
message | VARCHAR(100) |
max_dwell_time | DATETIME |
min_dwell_time | DATETIME |
咱们能够在此基础上建立一个 ROLLUP 表:
ColumnName | Type |
---|---|
age | INT |
user_id | BIGINT |
message | VARCHAR(100) |
max_dwell_time | DATETIME |
min_dwell_time | DATETIME |
能够看到,ROLLUP 和 Base 表的列彻底同样,只是将 user_id 和 age 的顺序调换了。那么当咱们进行以下查询时:
SELECT * FROM table where age=20 and massage LIKE "%error%";
会优先选择 ROLLUP 表,由于 ROLLUP 的前缀索引匹配度更高。
建立 rollup 语法
ALTER TABLE table1 ADD ROLLUP rollup_city(citycode, pv); # 取消正在执行的做业 CANCEL ALTER TABLE ROLLUP FROM table1;
由于建表时已经指定了列顺序,因此一个表只有一种前缀索引。这对于使用其余不能命中前缀索引的列做为条件进行的查询来讲,效率上可能没法知足需求。所以,咱们能够经过建立 ROLLUP 来人为的调整列顺序。
EXPLAIN your_sql;
命令得到查询执行计划,在执行计划中,查看是否命中 ROLLUP。DESC tbl_name ALL;
语句显示 Base 表和全部已建立完成的 ROLLUP。rollup 数量没有限制,但数量越多会消耗比较多的内存。支持 SQL 方式变动 rollup 字段数量。
Doris 支持两级分区存储, 第一层为 RANGE 分区(partition), 第二层为 HASH 分桶(bucket)。
1.3.1. RANGE分区(partition)
RANGE分区用于将数据划分红不一样区间, 逻辑上能够理解为将原始表划分红了多个子表。业务上,多数用户会选择采用按时间进行partition, 让时间进行partition有如下好处: * 可区分冷热数据 * 可用上Doris分级存储(SSD + SATA)的功能 * 按分区删除数据时,更加迅速
1.3.2. HASH分桶(bucket)
根据hash值将数据划分红不一样的 bucket。 * 建议采用区分度大的列作分桶, 避免出现数据倾斜 * 为方便数据恢复, 建议单个 bucket 的 size 不要太大, 保持在 10GB 之内, 因此建表或增长 partition 时请合理考虑 bucket 数目, 其中不一样 partition 可指定不一样的 buckets 数。
Doris对数据进行有序存储, 在数据有序的基础上为其创建稀疏索引,索引粒度为 block(1024行)。
稀疏索引选取 schema 中固定长度的前缀做为索引内容, 目前 Doris 选取 36 个字节的前缀做为索引。
系统默认实现 Join 的方式,是将小表进行条件过滤后,将其广播到大表所在的各个节点上,造成一个内存 Hash 表,而后流式读出大表的数据进行Hash Join。可是若是当小表过滤后的数据量没法放入内存的话,此时 Join 将没法完成,一般的报错应该是首先形成内存超限。
若是遇到上述状况,建议使用 Shuffle Join 的方式,也被称做 Partitioned Join。即将小表和大表都按照 Join 的 key 进行 Hash,而后进行分布式的 Join。这个对内存的消耗就会分摊到集群的全部计算节点上。
支持,但数据模式一旦表建立就没法变动。
不存在,但越多的 rollup 内存资源会消耗更多,同时,导入数据会比较慢。
支持,但要有顺序要求。
Doris 表结构由 key 和 value 构成,key 为维度,value 为统计指标。适合作简单的聚合计算和维度计算,使用比较低的硬件条件拥有比较高的性能。
Doris 官方还推出了 Docker 的 Dev 版本进行特性试用。https://hub.docker.com/r/apac...