『 Spark 』1. spark 简介

原文连接:『 Spark 』1. spark 简介git

写在前面

本系列是综合了本身在学习spark过程当中的理解记录 + 对参考文章中的一些理解 + 我的实践spark过程当中的一些心得而来。写这样一个系列仅仅是为了梳理我的学习spark的笔记记录,并不是为了作什么教程,因此一切以我的理解梳理为主,没有必要的细节就不会记录了。若想深刻了解,最好阅读参考文章和官方文档。github

其次,本系列是基于目前最新的 spark 1.6.0 系列开始的,spark 目前的更新速度很快,记录一下版本好仍是必要的。
最后,若是各位以为内容有误,欢迎留言备注,全部留言 24 小时内一定回复,很是感谢。
Tips: 若是插图看起来不明显,能够:1. 放大网页;2. 新标签中打开图片,查看原图哦。sql

1. 如何向别人介绍 spark

Apache Spark™ is a fast and general engine for large-scale data processing.编程

Apache Spark is a fast and general-purpose cluster computing system.
It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including :app

  • Spark SQL for SQL and structured data processing, extends to DataFrames and DataSetside

  • MLlib for machine learningoop

  • GraphX for graph processing学习

  • Spark Streaming for stream data processing大数据

2. spark 诞生的一些背景

introduction-to-spark-1.jpg
introduction-to-spark-2.jpg

Spark started in 2009, open sourced 2010, unlike the various specialized systems[hadoop, storm], Spark’s goal was to :ui

  • generalize MapReduce to support new apps within same engine

    • it's perfectly compatible with hadoop, can run on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, and S3.

  • speed up iteration computing over hadoop.

    • use memory + disk instead of disk as data storage medium

    • design a new programming modal, RDD, which make the data processing more graceful [RDD transformation, action, distributed jobs, stages and tasks]

introduction-to-spark-4.jpg
introduction-to-spark-5.jpg

3. 为什么选用 spark

  • designed, implemented and used as libs, instead of specialized systems;

    • much more useful and maintainable

introduction-to-spark-3.jpg

  • from history, it is designed and improved upon hadoop and storm, it has perfect genes;

  • documents, community, products and trends;

  • it provides sql, dataframes, datasets, machine learning lib, graph computing lib and activitily growth 3-party lib, easy to use, cover lots of use cases in lots field;

  • it provides ad-hoc exploring, which boost your data exploring and pre-processing and help you build your data ETL, processing job;

4. Next

下一篇,简单介绍 spark 里必须深入理解的基本概念。

参考文章

本系列文章连接

相关文章
相关标签/搜索