JavaShuo
栏目
标签
CVPR2020--ATSS: Adaptive Training Sample Selection
时间 2020-12-30
标签
学习生活
深度学习
目标检测
栏目
悠闲生活
繁體版
原文
原文链接
Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection ATSS为CVPR2020中的一篇论文,论文题目如上所示,大体意思为通过自适应选择训练样本来弥补基于锚和无锚检测器的差距。因为目前大多数目标检测成果都是在anchor-based的基础上产生的,
>>阅读原文<<
相关文章
1.
AdaptIS: Adaptive Instance Selection Network
2.
Adaptive Reference Sample Smoothing(RSAF)
3.
论文笔记:目标检测正负样本划分方法Adaptive Training Sample Selection (ATSS)原理
4.
目标检测论文: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
5.
【论文笔记】HSIC WIth Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement
6.
[目标检测]Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample S
7.
Hyperspectral Band Selection via Adaptive Subspace Partition Strategy
8.
[Converge] Feature Selection in training of Deep Learning
9.
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走读
10.
Machine Learning Course 4 Selection of Model
更多相关文章...
•
Docker 容器连接
-
Docker教程
•
PHP headers_list() 函数
-
PHP参考手册
•
RxJava操作符(三)Filtering
相关标签/搜索
adaptive
selection
sample
training
flink training
tensorrt&sample&python
悠闲生活
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳实践]了解 Eolinker 如何助力远程办公
2.
katalon studio 安装教程
3.
精通hibernate(harness hibernate oreilly)中的一个”错误“
4.
ECharts立体圆柱型
5.
零拷贝总结
6.
6 传输层
7.
Github协作图想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其历史版本
10.
Unity3D(二)游戏对象及组件
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
AdaptIS: Adaptive Instance Selection Network
2.
Adaptive Reference Sample Smoothing(RSAF)
3.
论文笔记:目标检测正负样本划分方法Adaptive Training Sample Selection (ATSS)原理
4.
目标检测论文: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
5.
【论文笔记】HSIC WIth Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement
6.
[目标检测]Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample S
7.
Hyperspectral Band Selection via Adaptive Subspace Partition Strategy
8.
[Converge] Feature Selection in training of Deep Learning
9.
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走读
10.
Machine Learning Course 4 Selection of Model
>>更多相关文章<<