由于利用Pyhon来作数据的预处理比较方便,所以在data_layer选择上,采用了MemoryDataLayer,能够比较方便的直接用Python 根据set_input_array进行feed数据,而后再调用solver进行step就能够了。说一下我碰到的问题,当时检查了一下感受没有哪里出错,可是报python
Segmentation Fault(Core Abort)
感受好囧,最怕这个了。通常说段错误都是内存错误,好比数组越界,无效的指针,引用被释放的资源等等。通过一步步debug以后发现问题出如今git
solver.net.set_input_arrays
solver在将数据传送到网络低端的时候报错。那么接下来找到python
目录下的caffe\python\caffe\_caffe.cpp
文件,这个文件是基于boost python的,用来将C++的接口导出,供python调用。进一步咱们找到相关函数github
void Net_SetInputArrays(Net<Dtype>* net, bp::object data_obj, bp::object labels_obj) { // check that this network has an input MemoryDataLayer shared_ptr<MemoryDataLayer<Dtype> > md_layer = boost::dynamic_pointer_cast<MemoryDataLayer<Dtype> >(net->layers()[0]); if (!md_layer) { throw std::runtime_error("set_input_arrays may only be called if the" " first layer is a MemoryDataLayer"); } // check that we were passed appropriately-sized contiguous memory PyArrayObject* data_arr = reinterpret_cast<PyArrayObject*>(data_obj.ptr()); PyArrayObject* labels_arr = reinterpret_cast<PyArrayObject*>(labels_obj.ptr()); CheckContiguousArray(data_arr, "data array", md_layer->channels(), md_layer->height(), md_layer->width()); CheckContiguousArray(labels_arr, "labels array", 1, 1, 1); if (PyArray_DIMS(data_arr)[0] != PyArray_DIMS(labels_arr)[0]) { throw std::runtime_error("data and labels must have the same first" " dimension"); } if (PyArray_DIMS(data_arr)[0] % md_layer->batch_size() != 0) { throw std::runtime_error("first dimensions of input arrays must be a" " multiple of batch size"); } md_layer->Reset(static_cast<Dtype*>(PyArray_DATA(data_arr)), static_cast<Dtype*>(PyArray_DATA(labels_arr)), PyArray_DIMS(data_arr)[0]); }
问题就出在了最后的一个语句数组
md_layer->Reset(static_cast<Dtype*>(PyArray_DATA(data_arr)), static_cast<Dtype*>(PyArray_DATA(labels_arr)), PyArray_DIMS(data_arr)[0]);
当执行reset MemoryDataLayer的Reset函数时出错。于此同时在github上也发现了一样的问题,https://github.com/BVLC/caffe/issues/2334也是由于Python MemoryDataLayer引起的段错误。他说到,在里面把传入的data和label作要给深拷贝就能够解决,估计是运行时数据已经被释放了,只传了指针引起了段错误。网络
解决方案:
找到caffe\src\layers\memory_data_layer.cpp
打开,给Reset函数添加相应的深拷贝代码app
template <typename Dtype> void MemoryDataLayer<Dtype>::Reset(Dtype* data, Dtype* labels, int n) { CHECK(data); CHECK(labels); CHECK_EQ(n % batch_size_, 0) << "n must be a multiple of batch size"; // Warn with transformation parameters since a memory array is meant to // be generic and no transformations are done with Reset(). if (this->layer_param_.has_transform_param()) { LOG(WARNING) << this->type() << " does not transform array data on Reset()"; } // data_ = data; 将这里注释掉, // labels_ = labels; //如下部分是进行深拷贝 if(data_) delete []data_; if(labels_) delete [] labels_; data_ = new Dtype[n*size_]; labels_ = new Dtype[n * num_tasks_]; memcpy(data_, data, sizeof(Dtype)*n*size_); memcpy(labels_, labels, sizeof(Dtype) * n * num_tasks_); n_ = n; pos_ = 0; }
Ok进行修改以后,回到Caffe的根目录,执行make all
,make test
,`make runtest
,make pycaffe
。从新编译完成以后,从新运行就行了,继续开始训练。函数