JavaShuo
栏目
标签
Low-Shot Learning from Imaginary Data论文简要解读
时间 2021-01-07
原文
原文链接
Low-Shot Learning from Imaginary Data 论文摘要 论文要点 end-to-end训练 Learned Hallucination Implementation details 最终效果 疑问点 论文摘要 本文主要提出了通过生成模型生成虚拟数据来扩充样本的多样性,并结合当前比较先进的元学习方法,通过end-to-end 训练两生成模型和分类算法,从而实现更好的lo
>>阅读原文<<
相关文章
1.
论文阅读笔记《Low-Shot Learning from Imaginary Data》
2.
论文阅读:AutoAugment: Learning Augmentation Strategies from Data
3.
论文简读—Imitation learning for language generation from unaligned data
4.
[NLP论文阅读] Supervised Learning of Universal Sentence Representations from NLI data
5.
【AutoAugment】2019-CVPR-AutoAugment: Learning Augmentation Strategies from Data-论文阅读
6.
Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data 论文阅读笔记
7.
论文理解《Learning from Synthetic Data for Crowd Counting in the Wild》
8.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 论文解读
9.
《learning discriminative features from electroence》论文精读只有摘要、结果和结论部分
10.
【论文笔记】Learning from Synthetic Data for Crowd Counting in the Wild
更多相关文章...
•
C# 文本文件的读写
-
C#教程
•
*.hbm.xml映射文件详解
-
Hibernate教程
•
JDK13 GA发布:5大特性解读
•
Scala 中文乱码解决
相关标签/搜索
论文解读
imaginary
learning
论文阅读
简要
data
DATA+++
简论
CV论文阅读
论文
Spring教程
MyBatis教程
PHP教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
CVPR 2020 论文大盘点-光流篇
2.
Photoshop教程_ps中怎么载入图案?PS图案如何导入?
3.
org.pentaho.di.core.exception.KettleDatabaseException:Error occurred while trying to connect to the
4.
SonarQube Scanner execution execution Error --- Failed to upload report - 500: An error has occurred
5.
idea 导入源码包
6.
python学习 day2——基础学习
7.
3D将是页游市场新赛道?
8.
osg--交互
9.
OSG-交互
10.
Idea、spring boot 图片(pgn显示、jpg不显示)解决方案
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文阅读笔记《Low-Shot Learning from Imaginary Data》
2.
论文阅读:AutoAugment: Learning Augmentation Strategies from Data
3.
论文简读—Imitation learning for language generation from unaligned data
4.
[NLP论文阅读] Supervised Learning of Universal Sentence Representations from NLI data
5.
【AutoAugment】2019-CVPR-AutoAugment: Learning Augmentation Strategies from Data-论文阅读
6.
Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data 论文阅读笔记
7.
论文理解《Learning from Synthetic Data for Crowd Counting in the Wild》
8.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 论文解读
9.
《learning discriminative features from electroence》论文精读只有摘要、结果和结论部分
10.
【论文笔记】Learning from Synthetic Data for Crowd Counting in the Wild
>>更多相关文章<<