自然语言处理-搜索中常用的bm25

BM25算法是一种常见用来做相关度打分的公式,思路比较简单,主要就是计算一个query里面所有词和文档的相关度,然后在把分数做累加操作,而每个词的相关度分数主要还是受到tf/idf的影响。 关于Bim BIM(二元假设模型)对于单词特征,只考虑单词是否在doc中出现过,并没有考虑单词本身的相关特征,BM25在BIM的基础上引入单词在查询中的权值,单词在doc中的权值,以及一些经验参数,所以BM25
相关文章
相关标签/搜索