在Kubernetes中,Pod是应用程序的载体,咱们能够经过Pod的IP来访问应用程序,可是Pod的IP地址不是固定的,这就意味着不方便直接采用Pod的IP对服务进行访问。html
为了解决这个问题,Kubernetes提供了Service资源,Service会对提供同一个服务的多个Pod进行聚合,而且提供一个统一的入口地址,经过访问Service的入口地址就能访问到后面的Pod服务。
node
Service在不少状况下只是一个概念,真正起做用的实际上是kube-proxy服务进程,每一个Node节点上都运行了一个kube-proxy的服务进程。当建立Service的时候会经过API Server向etcd写入建立的Service的信息,而kube-proxy会基于监听的机制发现这种Service的变化,而后它会将最新的Service信息转换为对应的访问规则。nginx
kube-proxy目前支持三种工做模式:git
userspace模式:github
userspace模式下,kube-proxy会为每个Service建立一个监听端口,发向Cluster IP的请求被iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法(负载均衡算法)选择一个提供服务的Pod并和其创建链接,以便将请求转发到Pod上。算法
该模式下,kube-proxy充当了一个四层负载均衡器的角色。因为kube-proxy运行在userspace中,在进行转发处理的时候会增长内核和用户空间之间的数据拷贝,虽然比较稳定,可是效率很是低下。shell
iptables模式后端
iptables模式下,kube-proxy为Service后端的每一个Pod建立对应的iptables规则,直接将发向Cluster IP的请求重定向到一个Pod的IP上。api
该模式下kube-proxy不承担四层负载均衡器的角色,只负责建立iptables规则。该模式的优势在于较userspace模式效率更高,可是不能提供灵活的LB策略,当后端Pod不可用的时候没法进行重试。浏览器
ipvs模式
ipvs模式和iptables相似,kube-proxy监控Pod的变化并建立相应的ipvs规则。ipvs相对iptables转发效率更高,除此以外,ipvs支持更多的LB算法。
开启ipvs(必须安装ipvs内核模块,不然会降级为iptables)
kubectl edit cm kube-proxy -n kube-system # 找到mode,添加"ipvs"
# 删除原来标签为kube-proxy的pod kubectl delete pod -l k8s-app=kube-proxy -n kube-system # 测试ipvs模块是否开启成功 ipvsadm -Ln IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 172.17.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 192.168.209.140:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 192.168.219.64:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.96.0.1:443 rr -> 192.168.209.140:6443 Masq 1 0 0 TCP 10.96.0.10:53 rr -> 10.244.0.2:53 Masq 1 0 0 -> 10.244.0.3:53 Masq 1 0 0 TCP 10.96.0.10:9153 rr -> 10.244.0.2:9153 Masq 1 0 0 -> 10.244.0.3:9153 Masq 1 0 0 TCP 10.96.178.15:80 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.244.0.0:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.244.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 127.0.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 UDP 10.96.0.10:53 rr -> 10.244.0.2:53 Masq 1 0 0 -> 10.244.0.3:53 Masq 1 0
Service的资源清单:
apiVersion: v1 # 版本 kind: Service # 类型 metadata: # 元数据 name: # 资源名称 namespace: # 命名空间 spec: selector: # 标签选择器,用于肯定当前Service代理那些Pod app: nginx type: NodePort # Service的类型,指定Service的访问方式 clusterIP: # 虚拟服务的IP地址 sessionAffinity: # session亲和性,支持ClientIP、None两个选项,默认值为None ports: # 端口信息 - port: 8080 # Service端口 protocol: TCP # 协议 targetPort : # Pod端口 nodePort: # 主机端口
spec.type说明:
ClusterIP:默认值,它是Kubernetes系统自动分配的虚拟IP,只能在集群内部访问。
NodePort:将Service经过指定的Node上的端口暴露给外部,经过此方法,就能够在集群外部访问服务。
LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式须要外部云环境的支持。
ExternalName:把集群外部的服务引入集群内部,直接使用。
在使用Service以前,首先利用Deployment建立三个Pod,为pod设置app=ngxinx-pod
标签。
# 建立deployment.yaml文件 apiVersion: apps/v1 kind: Deployment metadata: name: pc-deployment namespace: dev spec: replicas: 3 selector: matchLabels: app: nginx-pod template: metadata: labels: app: nginx-pod spec: containers: - name: nginx image: nginx:1.17.1 ports: - containerPort: 80
建立和查看Pod的信息
# 建立 kubectl create -f deployment.yaml # 查看 kubectl get pods -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pc-deployment-7d7dd5499b-6gmxf 1/1 Running 0 9m 192.168.104.3 node2 <none> <none> pc-deployment-7d7dd5499b-xfn7w 1/1 Running 0 9m 192.168.104.1 node2 <none> <none> pc-deployment-7d7dd5499b-zdllp 1/1 Running 0 9m 192.168.166.130 node1 <none> <none>
为了后面测试方便,修改三个Pod中Nginx的index.html
# 此处只展现了一个,其余两个操做相同。 # 进入容器内部 kubectl exec -it pc-deployment-7d7dd5499b-6gmxf -n dev /bin/sh # 修改index.html,将本来内容替换成Pod对应的ip echo "192.168.104.3 > /usr/share/nginx/html/index.html
修改完毕后,进行测试访问
curl 192.168.104.3 > 192.168.104.3 curl 192.168.104.1 > 192.168.104.1 curl 192.168.166.130 > 192.168.166.130
1)、建立Service
# 建立service-clusterip.yaml文件 apiVersion: v1 kind: Service metadata: name: service-clusterip namespace: dev spec: selector: app: nginx-pod clusterIP: 10.97.97.97 # service的IP地址,若是不写,默认会生成一个 type: ClusterIP ports: - port: 80 # Service的端口 targetPort: 80 # Pod的端口
2)、建立Service以及查看
# 建立 kubectl create -f service-clusterip.yaml # 查看 kubectl get svc -n dev -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR service-clusterip ClusterIP 10.97.97.97 <none> 80/TCP 44s app=nginx-pod # 查看详细信息 kubectl describe svc service-clusterip -n dev Name: service-clusterip Namespace: dev Labels: <none> Annotations: <none> Selector: app=nginx-pod Type: ClusterIP IP: 10.97.97.97 Port: <unset> 80/TCP TargetPort: 80/TCP Endpoints: 192.168.104.1:80,192.168.104.3:80,192.168.166.130:80 # Endpoints列表里就是当前Service能够负载到的服务入口 Session Affinity: None Events: <none>
Endpoint是Kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的全部Pod的访问地址,它是根据service配置文件中的selector描述产生的。
一个service由一组Pod组成,这些Pod经过Endpoints暴露出来,Endpoints是实现实际服务的端点集合。换言之,service和Pod之间的联系是经过Endpoints实现的。
# 查看Endpoint kubectl get endpoints -n dev -o wide NAME ENDPOINTS AGE service-clusterip 192.168.104.1:80,192.168.104.3:80,192.168.166.130:80 9m24s
3)、查看ipvs的映射规则
ipvsadm -Ln IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 172.17.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 192.168.209.140:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 192.168.219.64:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.96.0.1:443 rr -> 192.168.209.140:6443 Masq 1 0 0 TCP 10.96.0.10:53 rr -> 10.244.0.2:53 Masq 1 0 0 -> 10.244.0.3:53 Masq 1 0 0 TCP 10.96.0.10:9153 rr -> 10.244.0.2:9153 Masq 1 0 0 -> 10.244.0.3:9153 Masq 1 0 0 TCP 10.96.178.15:80 rr -> 192.168.104.2:80 Masq 1 0 0 # 这块是否是很眼熟了,rr表示轮询 TCP 10.97.97.97:80 rr -> 192.168.104.1:80 Masq 1 0 0 -> 192.168.104.3:80 Masq 1 0 0 -> 192.168.166.130:80 Masq 1 0 0 # ------------------------------- TCP 10.244.0.0:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.244.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 127.0.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 UDP 10.96.0.10:53 rr -> 10.244.0.2:53 Masq 1 0 0 -> 10.244.0.3:53 Masq 1 0 0
4)、访问10.97.97.97.80
while true;do curl 10.97.97.97:80; sleep 2;done; # 轮询效果 192.168.104.3 192.168.104.1 192.168.166.130 192.168.104.3 192.168.104.1 192.168.166.130 192.168.104.3 ......
5)、负载分发策略
对Service的访问被分发到了后端的Pod上去,目前Kubernetes提供了两种负载分发策略:
若是不定义,默认使用kube-proxy的策略,好比随机、轮询等。
基于客户端地址的会话保持模式,即来自同一个客户端发起的全部请求都会转发到固定的一个Pod上,这对于传统基于Session的认证项目来讲很友好,此模式能够在spec中添加sessionAffinity: ClusterIP
选项。
修改分发策略:
apiVersion: v1 kind: Service metadata: name: service-clusterip namespace: dev spec: selector: app: nginx-pod clusterIP: 10.97.97.97 # service的IP地址,若是不写,默认会生成一个 type: ClusterIP sessionAffinity: ClientIP # 修改分发策略为基于客户端地址的会话保持模式 ports: - port: 80 # Service的端口 targetPort: 80 # Pod的端口
更新svc以及访问
# 更新 kubectl apply -f service-clusterip.yaml # 访问 while true;do curl 10.97.97.97:80; sleep 2;done; 192.168.166.130 192.168.166.130 192.168.166.130 192.168.166.130 192.168.166.130 192.168.166.130 ....
在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而但愿本身来控制负载均衡策略,针对这种状况,Kubernetes提供了HeadLinesss Service,这类Service不会分配Cluster IP,若是想要访问Service,只能经过Service的域名进行查询。
1)、建立Service
# 建立service-headliness.yaml apiVersion: v1 kind: Service metadata: name: service-headliness namespace: dev spec: selector: app: nginx-pod clusterIP: None # 将clusterIP设置为None,便可建立headliness Service type: ClusterIP ports: - port: 80 # Service的端口 targetPort: 80 # Pod的端口
2)、查看详情
kubectl describe svc service-headliness -n dev Name: service-headliness Namespace: dev Labels: <none> Annotations: Selector: app=nginx-pod Type: ClusterIP IP: None Port: <unset> 80/TCP TargetPort: 80/TCP Endpoints: 192.168.104.1:80,192.168.104.3:80,192.168.166.130:80 Session Affinity: None Events: <none>
3)、查看域名解析状况
# 查看pod kubectl get pod -n dev NAME READY STATUS RESTARTS AGE pc-deployment-7d7dd5499b-6gmxf 1/1 Running 0 26m pc-deployment-7d7dd5499b-xfn7w 1/1 Running 0 26m pc-deployment-7d7dd5499b-zdllp 1/1 Running 0 26m # 进入Pod中,执行cat /etc/resolv.conf命令 kubectl exec -it pc-deployment-7d7dd5499b-6gmxf -n dev /bin/sh # cat /etc/resolv.conf nameserver 10.96.0.10 search dev.svc.cluster.local svc.cluster.local cluster.local options ndots:5
4)、经过Service的域名进行查询
yum -y install bind-utils dig @10.96.0.10 service-headliness.dev.svc.cluster.local ; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.5 <<>> @10.96.0.10 service-headliness.dev.svc.cluster.local ; (1 server found) ;; global options: +cmd ;; Got answer: ;; WARNING: .local is reserved for Multicast DNS ;; You are currently testing what happens when an mDNS query is leaked to DNS ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13705 ;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1 ;; WARNING: recursion requested but not available ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ;; QUESTION SECTION: ;service-headliness.dev.svc.cluster.local. IN A ;; ANSWER SECTION: service-headliness.dev.svc.cluster.local. 30 IN A 192.168.104.3 service-headliness.dev.svc.cluster.local. 30 IN A 192.168.104.1 service-headliness.dev.svc.cluster.local. 30 IN A 192.168.166.130 ;; Query time: 1 msec ;; SERVER: 10.96.0.10#53(10.96.0.10) ;; WHEN: Tue Aug 10 17:27:25 CST 2021 ;; MSG SIZE rcvd: 237
在以前的案例中,建立的Service的IP地址只能在集群内部才能够访问,若是但愿Service暴露给集群外部使用,那么就须要使用到另一种类型的Service,称为NodePort类型的Service。NodePort的工做原理就是将Service的端口映射到Node的一个端口上,而后就能够经过NodeIP:NodePort
来访问Service了。
1)、建立Service
apiVersion: v1 kind: Service metadata: name: service-nodeport namespace: dev spec: selector: app: nginx-pod type: NodePort # Service类型为NodePort ports: - port: 80 # Service的端口 targetPort: 80 # Pod的端口 nodePort: 30002 # 指定绑定的node的端口 #(默认取值范围是30000~32767),若是不指定,会默认分配
2)、查看Service
kubectl get svc service-nodeport -n dev -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR service-nodeport NodePort 10.102.12.251 <none> 80:30002/TCP 17s app=nginx-pod
3)、访问
经过浏览器访问:http://192.168.209.140:30002
LoadBalancer和NodePort很类似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来作一个负载均衡设备,而这个设备须要外部环境的支持,外部服务发送到这个设备上的请求,会被设备负载以后转发到集群中。
ExternalName类型的Service用于引入集群外部的服务,它经过externalName属性指定一个服务的地址,而后在集群内部访问此Service就能够访问到外部的服务了。
1)、建立service-externalname.yaml
apiVersion: v1 kind: Service metadata: name: service-externalname namespace: dev spec: type: ExternalName # Service类型为ExternalName externalName: www.baidu.com # 改为IP地址也能够
2)、域名解析
dig @10.96.0.10 service-externalname.dev.svc.cluster.local <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.5 <<>> @10.96.0.10 service-externalname.dev.svc.cluster.local ; (1 server found) ;; global options: +cmd ;; Got answer: ;; WARNING: .local is reserved for Multicast DNS ;; You are currently testing what happens when an mDNS query is leaked to DNS ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65339 ;; flags: qr aa rd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1 ;; WARNING: recursion requested but not available ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ;; QUESTION SECTION: ;service-externalname.dev.svc.cluster.local. IN A ;; ANSWER SECTION: service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com. www.baidu.com. 30 IN CNAME www.a.shifen.com. www.a.shifen.com. 30 IN A 14.215.177.38 www.a.shifen.com. 30 IN A 14.215.177.39 ;; Query time: 29 msec ;; SERVER: 10.96.0.10#53(10.96.0.10) ;; WHEN: Tue Aug 10 17:51:15 CST 2021 ;; MSG SIZE rcvd: 247
咱们已经知道,Service对集群以外暴露服务的主要方式有两种:NodePort和LoadBalancer,可是这两种方式,都有必定的缺点:
基于这种现状,Kubernetes提供了Ingress资源对象,Ingress只须要一个NodePort或者一个LB就能够知足暴露多个Service的需求,工做机制大体以下图所示:
实际上,Ingress至关于一个七层的负载均衡器,是Kubernetes对反向代理的一个抽象,它的工做原理相似于Nginx,能够理解为Ingress里面创建了诸多映射规则,Ingress Controller经过监听这些配置规则并转化为Nginx的反向代理配置,而后对外提供服务。
Ingress:Kubernetes中的一个对象,做用是定义请求如何转发到Service的规则。
Ingress Controller:具体实现反向代理及负载均衡的程序,对Ingress定义的规则进行解析,根据配置的规则来实现请求转发,实现的方式有不少,好比Nginx,Contour,Haproxy等。
Ingress(以Nginx)的工做原理以下:
一、用户编写Ingress规则,说明那个域名对应Kubernetes集群中的那个Service。
二、Ingress控制器动态感知Ingress服务规则的变化,而后生成一段对应的Nginx的反向代理配置。
三、Ingress控制器会将生成的Nginx配置写入到一个运行着的Nginx服务中,并动态更新。
四、到此为止,其实真正在工做的就是一个Nginx了,内部配置了用户定义的请求规则。
一、搭建Ingress环境
建立文件夹,并进入到此文件夹
mkdir ingress-controller && cd ingress-controller
二、获取Ingress-nginx,本次使用的是0.30版本
wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/baremetal/service-nodeport.yaml
三、建立Ingress-nginx以及查看:
# 建立 kubeclt apply -f ./ # 查看pod kubectl get pod -n ingress-nginx NAME READY STATUS RESTARTS AGE nginx-ingress-controller-5bb8fb4bb6-mn8xp 1/1 Running 0 37s # 查看Service kubectl get svc -n ingress-nginx NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE ingress-nginx NodePort 10.110.119.41 <none> 80:30994/TCP,443:30693/TCP 2m27s
为了后面的实验比较方便,建立以下图所示的模型:
1)、建立tomcat-nginx.yaml
apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment namespace: dev spec: replicas: 3 selector: matchLabels: app: nginx-pod template: metadata: labels: app: nginx-pod spec: containers: - name: nginx image: nginx:1.17.1 ports: - containerPort: 80 --- apiVersion: apps/v1 kind: Deployment metadata: name: tomcat-deployment namespace: dev spec: replicas: 3 selector: matchLabels: app: tomcat-pod template: metadata: labels: app: tomcat-pod spec: containers: - name: tomcat image: tomcat:8.5-jre10-slim ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: nginx-service namespace: dev spec: selector: app: nginx-pod clusterIP: None type: ClusterIP ports: - port: 80 targetPort: 80 --- apiVersion: v1 kind: Service metadata: name: tomcat-service namespace: dev spec: selector: app: tomcat-pod clusterIP: None type: ClusterIP ports: - port: 8080 targetPort: 8080
2)、建立Service和Pod以及查看
# 建立 kubectl create -f tomcat-ngxin.yaml deployment.apps/nginx-deployment created deployment.apps/tomcat-deployment created service/nginx-service created service/tomcat-service created # 查看 kubectl get svc,pod -n dev NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/nginx-service ClusterIP None <none> 80/TCP 2m18s service/service-externalname ExternalName <none> www.baidu.com <none> 118m service/service-headliness ClusterIP None <none> 80/TCP 157m service/service-nodeport NodePort 10.102.12.251 <none> 80:30002/TCP 132m service/tomcat-service ClusterIP None <none> 8080/TCP 2m18s NAME READY STATUS RESTARTS AGE pod/nginx-deployment-7d7dd5499b-nv7n6 1/1 Running 0 2m18s pod/nginx-deployment-7d7dd5499b-p7ndx 1/1 Running 0 2m18s pod/nginx-deployment-7d7dd5499b-qfqpp 1/1 Running 0 2m18s pod/pc-deployment-7d7dd5499b-6gmxf 1/1 Running 0 3h1m pod/pc-deployment-7d7dd5499b-xfn7w 1/1 Running 0 3h1m pod/pc-deployment-7d7dd5499b-zdllp 1/1 Running 0 3h1m pod/tomcat-deployment-7d5fcd4756-82xd4 1/1 Running 0 2m18s pod/tomcat-deployment-7d5fcd4756-8gz84 1/1 Running 0 2m18s pod/tomcat-deployment-7d5fcd4756-pv7zw 1/1 Running 0 2m18s
1)、建立ingress-http.yaml
apiVersion: extensions/v1beta1 kind: Ingress metadata: name: ingress-http namespace: dev spec: rules: - host: nginx.negan.com http: paths: - path: / backend: serviceName: nginx-service servicePort: 80 - host: tomcat.negan.com http: paths: - path: / backend: serviceName: tomcat-service servicePort: 8080
2)、建立以及查看
# 建立 kubectl apply -f ingress-http.yaml # 查看 kubectl get ingress -n dev NAME CLASS HOSTS ADDRESS PORTS AGE ingress-http <none> nginx.negan.com,tomcat.negan.com 80 5s # 查看详情 kubectl describe ingress ingress-http -n dev Name: ingress-http Namespace: dev Address: 10.110.119.41 Default backend: default-http-backend:80 (<error: endpoints "default-http-backend" not found>) Rules: Host Path Backends ---- ---- -------- nginx.negan.com / nginx-service:80 (192.168.104.1:80,192.168.104.3:80,192.168.104.5:80 + 3 more...) tomcat.negan.com / tomcat-service:8080 (192.168.104.4:8080,192.168.104.6:8080,192.168.166.134:8080) Annotations: Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal CREATE 90s nginx-ingress-controller Ingress dev/ingress-http Normal UPDATE 60s nginx-ingress-controller Ingress dev/ingress-http
3)、测试访问
在本机的hosts文件中添加以下的规则 (ip为主机master)
# C:\Windows\System32\drivers\etc\hosts 192.168.209.140 nginx.negan.com 192.168.209.140 tomcat.negan.com
查看ingress-nginx暴露的端口
kubectl get svc -n ingress-nginx kubectl get svc -n ingress-nginx NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE ingress-nginx NodePort 10.110.119.41 <none> 80:30994/TCP,443:30693/TCP 23m
经过浏览器访问:http://nginx.negan.com:30994 和 http://tomcat.negan.com:30994
1)、生成证书
openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/C=CN/ST=BJ/L=BJ/O=nginx/CN=xudaxian.com"
2)、建立密钥
kubectl create secret tls tls-secret --key tls.key --cert tls.crt
3)、建立ingress-https.yaml
apiVersion: extensions/v1beta1 kind: Ingress metadata: name: ingress-https namespace: dev spec: tls: - hosts: - nginx.xudaxian.com - tomcat.xudaxian.com secretName: tls-secret # 指定秘钥 rules: - host: nginx.negan.com http: paths: - path: / backend: serviceName: nginx-service servicePort: 80 - host: tomcat.negan.com http: paths: - path: / backend: serviceName: tomcat-service servicePort: 8080
4)、建立和查看
# 建立 kubectl create -f ingress-https.yaml # 查看 kubectl get ingress ingress-https -n dev NAME CLASS HOSTS ADDRESS PORTS AGE ingress-https <none> nginx.negan.com,tomcat.negan.com 80, 443 3s # 查看详情 Name: ingress-https Namespace: dev Address: Default backend: default-http-backend:80 (<error: endpoints "default-http-backend" not found>) TLS: tls-secret terminates nginx.negan.com,tomcat.negan.com Rules: Host Path Backends ---- ---- -------- nginx.negan.com / nginx-service:80 (192.168.104.1:80,192.168.104.3:80,192.168.104.5:80 + 3 more...) tomcat.negan.com / tomcat-service:8080 (192.168.104.4:8080,192.168.104.6:8080,192.168.166.134:8080) Annotations: <none> Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal CREATE 41s nginx-ingress-controller Ingress dev/ingress-https
5)、访问
经过浏览器访问:https://nginx.negan.com:30693和 https://tomcat.negan.com:30693