Kubernetes渐入佳境(Service和Ingress详解)

一、Service介绍

在Kubernetes中,Pod是应用程序的载体,咱们能够经过Pod的IP来访问应用程序,可是Pod的IP地址不是固定的,这就意味着不方便直接采用Pod的IP对服务进行访问。html

为了解决这个问题,Kubernetes提供了Service资源,Service会对提供同一个服务的多个Pod进行聚合,而且提供一个统一的入口地址,经过访问Service的入口地址就能访问到后面的Pod服务。
node

Service在不少状况下只是一个概念,真正起做用的实际上是kube-proxy服务进程,每一个Node节点上都运行了一个kube-proxy的服务进程。当建立Service的时候会经过API Server向etcd写入建立的Service的信息,而kube-proxy会基于监听的机制发现这种Service的变化,而后它会将最新的Service信息转换为对应的访问规则。nginx

kube-proxy目前支持三种工做模式:git

  • userspace模式:github

    userspace模式下,kube-proxy会为每个Service建立一个监听端口,发向Cluster IP的请求被iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法(负载均衡算法)选择一个提供服务的Pod并和其创建链接,以便将请求转发到Pod上。算法

    该模式下,kube-proxy充当了一个四层负载均衡器的角色。因为kube-proxy运行在userspace中,在进行转发处理的时候会增长内核和用户空间之间的数据拷贝,虽然比较稳定,可是效率很是低下。shell

  • iptables模式后端

    iptables模式下,kube-proxy为Service后端的每一个Pod建立对应的iptables规则,直接将发向Cluster IP的请求重定向到一个Pod的IP上。api

    该模式下kube-proxy不承担四层负载均衡器的角色,只负责建立iptables规则。该模式的优势在于较userspace模式效率更高,可是不能提供灵活的LB策略,当后端Pod不可用的时候没法进行重试。浏览器

  • ipvs模式

    ipvs模式和iptables相似,kube-proxy监控Pod的变化并建立相应的ipvs规则。ipvs相对iptables转发效率更高,除此以外,ipvs支持更多的LB算法。

    开启ipvs(必须安装ipvs内核模块,不然会降级为iptables)

    kubectl edit cm kube-proxy -n kube-system
    
    # 找到mode,添加"ipvs"

# 删除原来标签为kube-proxy的pod
kubectl delete pod -l k8s-app=kube-proxy -n kube-system

# 测试ipvs模块是否开启成功
ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  172.17.0.1:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  192.168.209.140:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  192.168.219.64:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  10.96.0.1:443 rr
  -> 192.168.209.140:6443         Masq    1      0          0         
TCP  10.96.0.10:53 rr
  -> 10.244.0.2:53                Masq    1      0          0         
  -> 10.244.0.3:53                Masq    1      0          0         
TCP  10.96.0.10:9153 rr
  -> 10.244.0.2:9153              Masq    1      0          0         
  -> 10.244.0.3:9153              Masq    1      0          0         
TCP  10.96.178.15:80 rr
  -> 192.168.104.2:80             Masq    1      0          0            
TCP  10.244.0.0:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  10.244.0.1:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  127.0.0.1:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
UDP  10.96.0.10:53 rr
  -> 10.244.0.2:53                Masq    1      0          0         
  -> 10.244.0.3:53                Masq    1      0

二、Service类型

Service的资源清单:

apiVersion: v1 # 版本
kind: Service # 类型
metadata: # 元数据
  name: # 资源名称
  namespace: # 命名空间
spec:
  selector: # 标签选择器,用于肯定当前Service代理那些Pod
    app: nginx
  type: NodePort # Service的类型,指定Service的访问方式
  clusterIP: # 虚拟服务的IP地址
  sessionAffinity: # session亲和性,支持ClientIP、None两个选项,默认值为None
  ports: # 端口信息
    - port: 8080 # Service端口
      protocol: TCP # 协议
      targetPort : # Pod端口
      nodePort:  # 主机端口

spec.type说明:

  • ClusterIP:默认值,它是Kubernetes系统自动分配的虚拟IP,只能在集群内部访问。

  • NodePort:将Service经过指定的Node上的端口暴露给外部,经过此方法,就能够在集群外部访问服务。

  • LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式须要外部云环境的支持。

  • ExternalName:把集群外部的服务引入集群内部,直接使用。

三、Service使用

3.一、实验环境准备

在使用Service以前,首先利用Deployment建立三个Pod,为pod设置app=ngxinx-pod标签。

# 建立deployment.yaml文件

apiVersion: apps/v1
kind: Deployment
metadata:
  name: pc-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
        - name: nginx
          image: nginx:1.17.1
          ports:
            - containerPort: 80

建立和查看Pod的信息

# 建立
kubectl create -f deployment.yaml

# 查看
kubectl get pods -n dev -o wide 
NAME                             READY   STATUS    RESTARTS   AGE   IP                NODE    NOMINATED NODE   READINESS GATES
pc-deployment-7d7dd5499b-6gmxf   1/1     Running   0          9m    192.168.104.3     node2   <none>           <none>
pc-deployment-7d7dd5499b-xfn7w   1/1     Running   0          9m    192.168.104.1     node2   <none>           <none>
pc-deployment-7d7dd5499b-zdllp   1/1     Running   0          9m    192.168.166.130   node1   <none>           <none>

为了后面测试方便,修改三个Pod中Nginx的index.html

# 此处只展现了一个,其余两个操做相同。
# 进入容器内部
kubectl exec -it pc-deployment-7d7dd5499b-6gmxf -n dev /bin/sh

# 修改index.html,将本来内容替换成Pod对应的ip
echo "192.168.104.3 > /usr/share/nginx/html/index.html

修改完毕后,进行测试访问

curl 192.168.104.3
> 192.168.104.3

curl 192.168.104.1
> 192.168.104.1

curl 192.168.166.130
> 192.168.166.130

3.二、ClusterIP类型的Service

1)、建立Service

# 建立service-clusterip.yaml文件

apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: 10.97.97.97 # service的IP地址,若是不写,默认会生成一个
  type: ClusterIP
  ports:
    - port: 80 # Service的端口
      targetPort: 80 # Pod的端口

2)、建立Service以及查看

# 建立
kubectl create -f service-clusterip.yaml

# 查看
kubectl get svc -n dev -o wide
NAME                TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)   AGE   SELECTOR
service-clusterip   ClusterIP   10.97.97.97   <none>        80/TCP    44s   app=nginx-pod

# 查看详细信息
kubectl describe svc service-clusterip -n dev

Name:              service-clusterip
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP:                10.97.97.97
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         192.168.104.1:80,192.168.104.3:80,192.168.166.130:80
# Endpoints列表里就是当前Service能够负载到的服务入口
Session Affinity:  None
Events:            <none>

Endpoint是Kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的全部Pod的访问地址,它是根据service配置文件中的selector描述产生的。

一个service由一组Pod组成,这些Pod经过Endpoints暴露出来,Endpoints是实现实际服务的端点集合。换言之,service和Pod之间的联系是经过Endpoints实现的。

# 查看Endpoint
kubectl get endpoints -n dev -o wide

NAME                ENDPOINTS                                              AGE
service-clusterip   192.168.104.1:80,192.168.104.3:80,192.168.166.130:80   9m24s

3)、查看ipvs的映射规则

ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  172.17.0.1:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  192.168.209.140:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  192.168.219.64:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  10.96.0.1:443 rr
  -> 192.168.209.140:6443         Masq    1      0          0         
TCP  10.96.0.10:53 rr
  -> 10.244.0.2:53                Masq    1      0          0         
  -> 10.244.0.3:53                Masq    1      0          0         
TCP  10.96.0.10:9153 rr
  -> 10.244.0.2:9153              Masq    1      0          0         
  -> 10.244.0.3:9153              Masq    1      0          0         
TCP  10.96.178.15:80 rr
  -> 192.168.104.2:80             Masq    1      0          0         
# 这块是否是很眼熟了,rr表示轮询
TCP  10.97.97.97:80 rr 
  -> 192.168.104.1:80             Masq    1      0          0         
  -> 192.168.104.3:80             Masq    1      0          0         
  -> 192.168.166.130:80           Masq    1      0          0      
# -------------------------------
TCP  10.244.0.0:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  10.244.0.1:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
TCP  127.0.0.1:32176 rr
  -> 192.168.104.2:80             Masq    1      0          0         
UDP  10.96.0.10:53 rr
  -> 10.244.0.2:53                Masq    1      0          0         
  -> 10.244.0.3:53                Masq    1      0          0

4)、访问10.97.97.97.80

while true;do curl 10.97.97.97:80; sleep 2;done;

# 轮询效果
192.168.104.3
192.168.104.1
192.168.166.130
192.168.104.3
192.168.104.1
192.168.166.130
192.168.104.3
......

5)、负载分发策略

对Service的访问被分发到了后端的Pod上去,目前Kubernetes提供了两种负载分发策略:

  • 若是不定义,默认使用kube-proxy的策略,好比随机、轮询等。

  • 基于客户端地址的会话保持模式,即来自同一个客户端发起的全部请求都会转发到固定的一个Pod上,这对于传统基于Session的认证项目来讲很友好,此模式能够在spec中添加sessionAffinity: ClusterIP选项。

修改分发策略:

apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: 10.97.97.97 # service的IP地址,若是不写,默认会生成一个
  type: ClusterIP
  sessionAffinity: ClientIP # 修改分发策略为基于客户端地址的会话保持模式
  ports:
    - port: 80 # Service的端口
      targetPort: 80 # Pod的端口

更新svc以及访问

# 更新
kubectl apply -f service-clusterip.yaml

# 访问
while true;do curl 10.97.97.97:80; sleep 2;done;

192.168.166.130
192.168.166.130
192.168.166.130
192.168.166.130
192.168.166.130
192.168.166.130
....

3.三、HeadLiness类型的Srvice

在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而但愿本身来控制负载均衡策略,针对这种状况,Kubernetes提供了HeadLinesss Service,这类Service不会分配Cluster IP,若是想要访问Service,只能经过Service的域名进行查询。

1)、建立Service

# 建立service-headliness.yaml

apiVersion: v1
kind: Service
metadata:
  name: service-headliness
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None # 将clusterIP设置为None,便可建立headliness Service
  type: ClusterIP
  ports:
    - port: 80 # Service的端口
      targetPort: 80 # Pod的端口

2)、查看详情

kubectl describe svc service-headliness -n dev

Name:              service-headliness
Namespace:         dev
Labels:            <none>
Annotations:       Selector:  app=nginx-pod
Type:              ClusterIP
IP:                None
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         192.168.104.1:80,192.168.104.3:80,192.168.166.130:80
Session Affinity:  None
Events:            <none>

3)、查看域名解析状况

# 查看pod
kubectl get pod -n dev

NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-7d7dd5499b-6gmxf   1/1     Running   0          26m
pc-deployment-7d7dd5499b-xfn7w   1/1     Running   0          26m
pc-deployment-7d7dd5499b-zdllp   1/1     Running   0          26m

# 进入Pod中,执行cat /etc/resolv.conf命令
kubectl exec -it pc-deployment-7d7dd5499b-6gmxf -n dev /bin/sh

# cat /etc/resolv.conf
nameserver 10.96.0.10
search dev.svc.cluster.local svc.cluster.local cluster.local
options ndots:5

4)、经过Service的域名进行查询

yum -y install bind-utils

dig @10.96.0.10 service-headliness.dev.svc.cluster.local

; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.5 <<>> @10.96.0.10 service-headliness.dev.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13705
;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;service-headliness.dev.svc.cluster.local. IN A

;; ANSWER SECTION:
service-headliness.dev.svc.cluster.local. 30 IN	A 192.168.104.3
service-headliness.dev.svc.cluster.local. 30 IN	A 192.168.104.1
service-headliness.dev.svc.cluster.local. 30 IN	A 192.168.166.130

;; Query time: 1 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: Tue Aug 10 17:27:25 CST 2021
;; MSG SIZE  rcvd: 237

3.四、NodePort类型的Service

在以前的案例中,建立的Service的IP地址只能在集群内部才能够访问,若是但愿Service暴露给集群外部使用,那么就须要使用到另一种类型的Service,称为NodePort类型的Service。NodePort的工做原理就是将Service的端口映射到Node的一个端口上,而后就能够经过NodeIP:NodePort来访问Service了。

1)、建立Service

apiVersion: v1
kind: Service
metadata:
  name: service-nodeport
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: NodePort # Service类型为NodePort
  ports:
    - port: 80 # Service的端口
      targetPort: 80 # Pod的端口
      nodePort: 30002 # 指定绑定的node的端口
      			 #(默认取值范围是30000~32767),若是不指定,会默认分配

2)、查看Service

kubectl get svc service-nodeport -n dev -o wide
NAME               TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE   SELECTOR
service-nodeport   NodePort   10.102.12.251   <none>        80:30002/TCP   17s   app=nginx-pod

3)、访问

经过浏览器访问:http://192.168.209.140:30002

3.五、LoadBalancer类型

LoadBalancer和NodePort很类似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来作一个负载均衡设备,而这个设备须要外部环境的支持,外部服务发送到这个设备上的请求,会被设备负载以后转发到集群中。

3.六、ExternalName类型的Service

ExternalName类型的Service用于引入集群外部的服务,它经过externalName属性指定一个服务的地址,而后在集群内部访问此Service就能够访问到外部的服务了。

1)、建立service-externalname.yaml

apiVersion: v1
kind: Service
metadata:
  name: service-externalname
  namespace: dev
spec:
  type: ExternalName # Service类型为ExternalName
  externalName: www.baidu.com # 改为IP地址也能够

2)、域名解析

dig @10.96.0.10 service-externalname.dev.svc.cluster.local

<<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.5 <<>> @10.96.0.10 service-externalname.dev.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65339
;; flags: qr aa rd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;service-externalname.dev.svc.cluster.local. IN A

;; ANSWER SECTION:
service-externalname.dev.svc.cluster.local. 30 IN CNAME	www.baidu.com.
www.baidu.com.		30	IN	CNAME	www.a.shifen.com.
www.a.shifen.com.	30	IN	A	14.215.177.38
www.a.shifen.com.	30	IN	A	14.215.177.39

;; Query time: 29 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: Tue Aug 10 17:51:15 CST 2021
;; MSG SIZE  rcvd: 247

四、Ingress介绍

咱们已经知道,Service对集群以外暴露服务的主要方式有两种:NodePort和LoadBalancer,可是这两种方式,都有必定的缺点:

  • NodePort方式的缺点是会占用不少集群机器的端口,那么当集群服务变多的时候,这个缺点就愈发明显。
  • LoadBalancer的缺点是每一个Service都须要一个LB,浪费,麻烦,而且须要Kubernetes以外的设备的支持。

基于这种现状,Kubernetes提供了Ingress资源对象,Ingress只须要一个NodePort或者一个LB就能够知足暴露多个Service的需求,工做机制大体以下图所示:

实际上,Ingress至关于一个七层的负载均衡器,是Kubernetes对反向代理的一个抽象,它的工做原理相似于Nginx,能够理解为Ingress里面创建了诸多映射规则,Ingress Controller经过监听这些配置规则并转化为Nginx的反向代理配置,而后对外提供服务。

  • Ingress:Kubernetes中的一个对象,做用是定义请求如何转发到Service的规则。

  • Ingress Controller:具体实现反向代理及负载均衡的程序,对Ingress定义的规则进行解析,根据配置的规则来实现请求转发,实现的方式有不少,好比Nginx,Contour,Haproxy等。

Ingress(以Nginx)的工做原理以下:

​ 一、用户编写Ingress规则,说明那个域名对应Kubernetes集群中的那个Service。

​ 二、Ingress控制器动态感知Ingress服务规则的变化,而后生成一段对应的Nginx的反向代理配置。

​ 三、Ingress控制器会将生成的Nginx配置写入到一个运行着的Nginx服务中,并动态更新。

​ 四、到此为止,其实真正在工做的就是一个Nginx了,内部配置了用户定义的请求规则。

五、Ingress使用

5.一、环境准备

一、搭建Ingress环境

建立文件夹,并进入到此文件夹

mkdir ingress-controller && cd ingress-controller

二、获取Ingress-nginx,本次使用的是0.30版本

wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml

wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/baremetal/service-nodeport.yaml

三、建立Ingress-nginx以及查看:

# 建立
kubeclt apply -f ./

# 查看pod
kubectl get pod -n ingress-nginx

NAME                                        READY   STATUS    RESTARTS   AGE
nginx-ingress-controller-5bb8fb4bb6-mn8xp   1/1     Running   0          37s

# 查看Service
kubectl get svc -n ingress-nginx

NAME            TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx   NodePort   10.110.119.41   <none>        80:30994/TCP,443:30693/TCP   2m27s

5.二、准备Service和Pod

为了后面的实验比较方便,建立以下图所示的模型:

1)、建立tomcat-nginx.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports:
        - containerPort: 80

---

apiVersion: apps/v1
kind: Deployment
metadata:
  name: tomcat-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: tomcat-pod
  template:
    metadata:
      labels:
        app: tomcat-pod
    spec:
      containers:
      - name: tomcat
        image: tomcat:8.5-jre10-slim
        ports:
        - containerPort: 8080

---

apiVersion: v1
kind: Service
metadata:
  name: nginx-service
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 80

---

apiVersion: v1
kind: Service
metadata:
  name: tomcat-service
  namespace: dev
spec:
  selector:
    app: tomcat-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 8080
    targetPort: 8080

2)、建立Service和Pod以及查看

# 建立
kubectl create -f tomcat-ngxin.yaml 

deployment.apps/nginx-deployment created
deployment.apps/tomcat-deployment created
service/nginx-service created
service/tomcat-service created

# 查看
kubectl get svc,pod -n dev

NAME                           TYPE           CLUSTER-IP      EXTERNAL-IP     PORT(S)        AGE
service/nginx-service          ClusterIP      None            <none>          80/TCP         2m18s
service/service-externalname   ExternalName   <none>          www.baidu.com   <none>         118m
service/service-headliness     ClusterIP      None            <none>          80/TCP         157m
service/service-nodeport       NodePort       10.102.12.251   <none>          80:30002/TCP   132m
service/tomcat-service         ClusterIP      None            <none>          8080/TCP       2m18s

NAME                                     READY   STATUS    RESTARTS   AGE
pod/nginx-deployment-7d7dd5499b-nv7n6    1/1     Running   0          2m18s
pod/nginx-deployment-7d7dd5499b-p7ndx    1/1     Running   0          2m18s
pod/nginx-deployment-7d7dd5499b-qfqpp    1/1     Running   0          2m18s
pod/pc-deployment-7d7dd5499b-6gmxf       1/1     Running   0          3h1m
pod/pc-deployment-7d7dd5499b-xfn7w       1/1     Running   0          3h1m
pod/pc-deployment-7d7dd5499b-zdllp       1/1     Running   0          3h1m
pod/tomcat-deployment-7d5fcd4756-82xd4   1/1     Running   0          2m18s
pod/tomcat-deployment-7d5fcd4756-8gz84   1/1     Running   0          2m18s
pod/tomcat-deployment-7d5fcd4756-pv7zw   1/1     Running   0          2m18s

5.三、HTTP

1)、建立ingress-http.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: ingress-http
  namespace: dev
spec:
  rules:
  - host: nginx.negan.com
    http:
      paths:
      - path: /
        backend:
          serviceName: nginx-service
          servicePort: 80
  - host: tomcat.negan.com
    http:
      paths:
      - path: /
        backend:
          serviceName: tomcat-service
          servicePort: 8080

2)、建立以及查看

# 建立
kubectl apply -f ingress-http.yaml 

# 查看
kubectl get ingress -n dev
NAME           CLASS    HOSTS                              ADDRESS   PORTS   AGE
ingress-http   <none>   nginx.negan.com,tomcat.negan.com             80      5s

# 查看详情
kubectl describe ingress ingress-http -n dev

Name:             ingress-http
Namespace:        dev
Address:          10.110.119.41
Default backend:  default-http-backend:80 (<error: endpoints "default-http-backend" not found>)
Rules:
  Host              Path  Backends
  ----              ----  --------
  nginx.negan.com   
                    /   nginx-service:80 (192.168.104.1:80,192.168.104.3:80,192.168.104.5:80 + 3 more...)
  tomcat.negan.com  
                    /   tomcat-service:8080 (192.168.104.4:8080,192.168.104.6:8080,192.168.166.134:8080)
Annotations:        Events:
  Type              Reason  Age   From                      Message
  ----              ------  ----  ----                      -------
  Normal            CREATE  90s   nginx-ingress-controller  Ingress dev/ingress-http
  Normal            UPDATE  60s   nginx-ingress-controller  Ingress dev/ingress-http

3)、测试访问

在本机的hosts文件中添加以下的规则 (ip为主机master)

# C:\Windows\System32\drivers\etc\hosts
192.168.209.140 nginx.negan.com
192.168.209.140 tomcat.negan.com

查看ingress-nginx暴露的端口

kubectl get svc -n ingress-nginx

 kubectl get svc -n ingress-nginx
NAME            TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx   NodePort   10.110.119.41   <none>        80:30994/TCP,443:30693/TCP   23m

经过浏览器访问:http://nginx.negan.com:30994http://tomcat.negan.com:30994

5.四、HTTPS

1)、生成证书

openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/C=CN/ST=BJ/L=BJ/O=nginx/CN=xudaxian.com"

2)、建立密钥

kubectl create secret tls tls-secret --key tls.key --cert tls.crt

3)、建立ingress-https.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: ingress-https
  namespace: dev
spec:
  tls:
    - hosts:
      - nginx.xudaxian.com
      - tomcat.xudaxian.com
      secretName: tls-secret # 指定秘钥
  rules:
  - host: nginx.negan.com
    http:
      paths:
      - path: /
        backend:
          serviceName: nginx-service
          servicePort: 80
  - host: tomcat.negan.com
    http:
      paths:
      - path: /
        backend:
          serviceName: tomcat-service
          servicePort: 8080

4)、建立和查看

# 建立
kubectl create -f ingress-https.yaml

# 查看
kubectl get ingress ingress-https -n dev

NAME            CLASS    HOSTS                              ADDRESS   PORTS     AGE
ingress-https   <none>   nginx.negan.com,tomcat.negan.com             80, 443   3s

# 查看详情
Name:             ingress-https
Namespace:        dev
Address:          
Default backend:  default-http-backend:80 (<error: endpoints "default-http-backend" not found>)
TLS:
  tls-secret terminates nginx.negan.com,tomcat.negan.com
Rules:
  Host              Path  Backends
  ----              ----  --------
  nginx.negan.com   
                    /   nginx-service:80 (192.168.104.1:80,192.168.104.3:80,192.168.104.5:80 + 3 more...)
  tomcat.negan.com  
                    /   tomcat-service:8080 (192.168.104.4:8080,192.168.104.6:8080,192.168.166.134:8080)
Annotations:        <none>
Events:
  Type    Reason  Age   From                      Message
  ----    ------  ----  ----                      -------
  Normal  CREATE  41s   nginx-ingress-controller  Ingress dev/ingress-https

5)、访问

经过浏览器访问:https://nginx.negan.com:30693和 https://tomcat.negan.com:30693

相关文章
相关标签/搜索