products一个商品价格变化的表,orders商品订单,记录每次购买商品和日期
基于Spark SQL中的不等值join实现orders和products的匹配,统计每一个订单中商品对应当时的价格sql
缓慢变化的商品价格表
旺仔牛奶,发生过一次价格变动apache
scala> val products = sc.parallelize(Array( | ("旺仔牛奶", "2017-01-01", "2018-01-01", 4), | ("旺仔牛奶", "2018-01-02", "2020-01-01", 5), | ("王老吉", "2017-01-02", "2019-01-01", 5), | ("卫龙辣条", "2010-01-01", "2020-01-01", 2) | )).toDF("name", "startDate", "endDate", "price") products: org.apache.spark.sql.DataFrame = [name: string, startDate: string ... 2 more fields] scala> products.show(); +----+----------+----------+-----+ |name| startDate| endDate|price| +----+----------+----------+-----+ |旺仔牛奶|2017-01-01|2018-01-01| 4| |旺仔牛奶|2018-01-02|2020-01-01| 5| | 王老吉|2017-01-02|2019-01-01| 5| |卫龙辣条|2010-01-01|2020-01-01| 2| +----+----------+----------+-----+
订单表(商品名称,订单日期)
旺仔牛奶在不一样价格时段分别发生了一次订单ide
scala> val orders = sc.parallelize(Array( | ("2017-06-01", "旺仔牛奶"), | ("2017-07-01", "王老吉"), | ("2018-03-01", "旺仔牛奶") | )).toDF("date", "product") orders: org.apache.spark.sql.DataFrame = [date: string, product: string] scala> orders.show +----------+-------+ | date|product| +----------+-------+ |2017-06-01|旺仔牛奶| |2017-07-01| 王老吉| |2018-03-01|旺仔牛奶| +----------+-------+
经过不等值链接,计算每一个订单当时的商品价格
查看出旺仔牛奶,两个订单在不一样时间段上对应的价格spa
scala> orders.join(products, $"product" === $"name" && $"date" >= $"startDate" && $"date" <= $"endDate").show() +-----------+------------+----------+------------+-------------+-----+ | date | product | name | startDate | endDate | price| +-----------+------------+----------+------------+-------------+-----+ |2017-07-01| 王老吉 | 王老吉 |2017-01-02|2019-01-01 | 5 | |2017-06-01| 旺仔牛奶 |旺仔牛奶|2017-01-01|2018-01-01 | 4 | |2018-03-01| 旺仔牛奶 |旺仔牛奶|2018-01-02|2020-01-01 | 5 | +-----------+------------+----------+------------+-------------+-----+