深度学习:什么是自编码器(Autoencoder)

Autoencoder autoencoder是一种无监督的学习算法,主要用于数据的降维或者特征的抽取,在深度学习中,autoencoder可用于在训练阶段开始前,确定权重矩阵WW的初始值。 神经网络中的权重矩阵WW可看作是对输入的数据进行特征转换,即先将数据编码为另一种形式,然后在此基础上进行一系列学习。然而,在对权重初始化时,我们并不知道初始的权重值在训练时会起到怎样的作用,也不知道在训练过程
相关文章
相关标签/搜索