
总体架构
最近看到了我在Github上写的rabbitmq-examples陆续被人star了,就想着写个rocketmq-examples。对rabbitmq感兴趣的小伙伴能够看我以前的文章。下面把RocketMQ的各个特性简单介绍一下,这样在用的时候内心也更有把握git
全网最全RabbitMQ总结,别再说你不会RabbitMQRocketMQ是阿里自研的消息中间件,RocketMQ的总体架构以下
主要有4个角色github
Producer:消息生产者。相似,发信者 Consumer:消息消费者。相似,收信者 BrokerServer:消息的存储,投递,查询。相似,邮局 NameServer:注册中心,支持Broker的动态注册与发现。相似,邮局的管理结构web
再介绍几个基本概念算法
Topic(主题):一类消息的集合,Topic和消息是一对多的关系。每一个Broker能够存储多个Topic的消息,每一个Topic也能够分片存储于不一样的Broker数据库
Tag(标签):在Topic类别下的二级子类别。如财务系统的全部消息的Topic为Finance_Topic,建立订单消息的Tag为Create_Tag,关闭订单消息的Tag为Close_Tag。这样就能根据Tag消费不一样的消息,固然你也能够为建立订单和关闭订单的消息各自建立一个Topicapache
Message Queue(消息队列):至关于Topic的分区,用于并行发送和消费消息。Message Queue在Broker上,一个Topic默认的Message Queue的数量为4微信
Producer Group(生产者组):同一类Producer的集合。若是发送的是事务消息且原始生产者在发送以后崩溃,Broker会联系统一辈子产者组内的其余生产者实例以提交或回溯消费网络
Consumer Group(消费者组):同一类Consumer的集合。消费者组内的实例必须订阅彻底相同的Topic架构
Clustering(集群消费):相同Consumer Group下的每一个Consumer实例平均分摊消息负载均衡
Broadcasting(广播消费):相同Consumer Group的每一个Consumer实例都接收全量的消息
用图演示一下Clustering和Broadcasting的区别若是我有一条订单程成交的消息,财务系统和物流系统都要同时订阅消费这条消息,该怎么办呢?定义2个Consumer Group便可
Consumer1和Consumer2属于一个Consumer Group,Consumer3和Consumer4属于一个Consumer Group,消息会全量发送到这2个Consuemr Group,至于这2个Consumer Group是集群消费仍是广播消费,本身定义便可
工做流程在官方文档写的很详细,再也不深刻了
https://github.com/apache/rocketmq/tree/master/docs/cn

Message
消息的各类处理方式涉及到的内容较多,因此我就不在文章中放代码了,直接放GitHub了,目前还在不断完善中
地址为:https://github.com/erlieStar/rocketmq-examples,
和以前的RabbitMQ一个风格,基本上全部知识点都涉及到了
地址为:https://github.com/erlieStar/rabbitmq-example
每一个消息必须属于一个Topic。RocketMQ中每一个消息具备惟一的Message Id,且能够携带具备业务标识的Key,咱们能够经过Topic,Message Id或Key来查询消息
消息消费的方式
-
Pull(拉取式消费),Consumer主动从Broker拉取消息 -
Push(推送式消费),Broker收到数据后会主动推送给Consumer,实时性较高
消息的过滤方式
-
指定Tag -
SQL92语法过滤
消息的发送方式
-
同步,收到响应后才会发送下一条消息 -
异步,一直发,用异步的回调函数来获取结果 -
单向(只管发,无论结果)
消息的种类
-
顺序消息 -
延迟消息 -
批量消息 -
事务消息
顺序消息
顺序消息分为局部有序和全局有序
官方介绍为普通顺序消息和严格顺序消息
局部有序:同一个业务相关的消息是有序的,如针对同一个订单的建立和付款消息是有序的,只须要在发送的时候指定message queue便可,以下所示,将同一个orderId对应的消息发送到同一个队列
SendResult sendResult = producer.send(message, new MessageQueueSelector() {
/**
* @param mqs topic对应的message queue
* @param msg send方法传入的message
* @param arg send方法传入的orderId
*/
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
// 根据业务对象选择对应的队列
Integer orderId = (Integer) arg;
int index = orderId % mqs.size();
return mqs.get(index);
}
}, orderId);
消费者所使用的Listener必须是MessageListenerOrderly(对于一个队列的消息采用一个线程去处理),而日常的话咱们使用的是MessageListenerConcurrently
全局有序:要想实现全局有序,则Topic只能有一个message queue。
延迟消息
RocketMQ并不支持任意时间的延迟,须要设置几个固定的延时等级,从1s到2h分别对应着等级1到18
// org.apache.rocketmq.store.config.MessageStoreConfig
private String messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h"
批量消息
批量发送消息能显著提升传递小消息的性能,限制是这批消息应该有相同的topic,相同的waitStoreMsgOK,并且不能是延时消息,一批消息的总大小不该超过1MB
事务消息
事务在实际的业务场景中仍是常常遇到的,以转帐为例子
张三给李四转帐100元,能够分为以下2步
-
张三的帐户减去100元 -
李四的帐户加上100元
这2个操做要是同时成功,要是同时失败,否则会形成数据不一致的状况,基于单个数据库Connection时,咱们只须要在方法上加上@Transactional注解就能够了。
若是基于多个Connection(如服务拆分,数据库分库分表),加@Transactional此时就无论用了,就得用到分布式事务
分布式事务的解决方案不少,RocketMQ只是其中一种方案,RocketMQ能够保证最终一致性RocketMQ实现分布式事务的流程以下
-
producer向mq server发送一个半消息 -
mq server将消息持久化成功后,向发送方确认消息已经发送成功,此时消息并不会被consumer消费 -
producer开始执行本地事务逻辑 -
producer根据本地事务执行结果向mq server发送二次确认,mq收到commit状态,将消息标记为可投递,consumer会消费该消息。mq收到rollback则删除半消息,consumer将不会消费该消息,若是收到unknow状态,mq会对消息发起回查 -
在断网或者应用重启等特殊状况下,步骤4提交的2次确认有可能没有到达mq server,通过固定时间后mq会对该消息发起回查 -
producer收到回查后,须要检查本地事务的执行状态 -
producer根据本地事务的最终状态,再次提交二次确认,mq仍按照步骤4对半消息进行操做
理解了原理,看代码实现就很容易了,放一个官方的example
public class TransactionListenerImpl implements TransactionListener {
private AtomicInteger index = new AtomicInteger(0);
private ConcurrentHashMap<String, Integer> localTrans = new ConcurrentHashMap<>();
@Override
public LocalTransactionState executeLocalTransaction(Message msg, Object arg) {
int value = index.getAndIncrement();
int status = value % 3;
localTrans.put(msg.getTransactionId(), status);
return LocalTransactionState.UNKNOW;
}
@Override
public LocalTransactionState checkLocalTransaction(MessageExt msg) {
Integer status = localTrans.get(msg.getTransactionId());
if (status != null) {
switch (status) {
case 0:
return LocalTransactionState.UNKNOW;
case 1:
return LocalTransactionState.COMMIT_MESSAGE;
case 2:
return LocalTransactionState.ROLLBACK_MESSAGE;
default:
return LocalTransactionState.COMMIT_MESSAGE;
}
}
return LocalTransactionState.COMMIT_MESSAGE;
}
}
实现分布式事务须要实现TransactionListener接口,2个方法的做用以下
-
executeLocalTransaction,执行本地事务 -
checkLocalTransaction,回查本地事务状态
针对这个例子,全部的消息都会回查,由于返回的都是UNKNOW,回查的时候status=1的数据会被消费,status=2的数据会被删除,status=0的数据会一直回查,直到超过默认的回查次数。
发送方代码以下
public class TransactionProducer {
public static final String RPODUCER_GROUP_NAME = "transactionProducerGroup";
public static final String TOPIC_NAME = "transactionTopic";
public static final String TAG_NAME = "transactionTag";
public static void main(String[] args) throws Exception {
TransactionListener transactionListener = new TransactionListenerImpl();
TransactionMQProducer producer = new TransactionMQProducer(RPODUCER_GROUP_NAME);
ExecutorService executorService = new ThreadPoolExecutor(2, 5, 100, TimeUnit.SECONDS,
new ArrayBlockingQueue<>(100), new ThreadFactory() {
@Override
public Thread newThread(Runnable r) {
Thread thread = new Thread();
thread.setName("transaction-msg-check-thread");
return thread;
}
});
producer.setExecutorService(executorService);
producer.setTransactionListener(transactionListener);
producer.start();
for (int i = 0; i < 100; i++) {
Message message = new Message(TOPIC_NAME, TAG_NAME,
("hello rocketmq " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.send(message);
System.out.println(sendResult);
}
TimeUnit.HOURS.sleep(1);
producer.shutdown();
}
}
看到这,可能有人会问了,咱们先执行本地事务,执行成功后再发送消息,这样能够吗?
其实这样作仍是有可能会形成数据不一致的问题。假如本地事务执行成功,发送消息,因为网络延迟,消息发送成功,可是回复超时了,抛出异常,本地事务回滚。可是消息其实投递成功并被消费了,此时就会形成数据不一致的状况
那消息投递到mq server,consumer消费失败怎么办?
若是是消费超时,重试便可。若是是因为代码等缘由真的消费失败了,此时就得人工介入,从新手动发送消息,达到最终一致性。
消息重试
发送端重试
producer向broker发送消息后,没有收到broker的ack时,rocketmq会自动重试。重试的次数能够设置,默认为2次
DefaultMQProducer producer = new DefaultMQProducer(RPODUCER_GROUP_NAME);
// 同步发送设置重试次数为5次
producer.setRetryTimesWhenSendFailed(5);
// 异步发送设置重试次数为5次
producer.setRetryTimesWhenSendAsyncFailed(5);
消费端重试
顺序消息的重试
对于顺序消息,当Consumer消费消息失败后,RocketMQ会不断进行消息重试,此时后续消息会被阻塞。因此当使用顺序消息的时候,监控必定要作好,避免后续消息被阻塞
无序消息的重试
当消费模式为集群模式时,Broker才会自动进行重试,对于广播消息是不会进行重试的
当consumer消费消息后返回ConsumeConcurrentlyStatus.CONSUME_SUCCESS代表消费消息成功,不会进行重试
当consumer符合以下三种场景之一时,会对消息进行重试
-
返回ConsumeConcurrentlyStatus.RECONSUME_LATER -
返回null -
主动或被动抛出异常
RocketMQ默认每条消息会被重试16次,超过16次则再也不重试,会将消息放到死信队列,固然咱们也能够本身设置重试次数
每次重试的时间间隔以下
第几回重试 | 与上次间隔时间 | 第几回重试 | 与上次间隔时间 |
---|---|---|---|
1 | 10s | 10 | 7分钟 |
2 | 30s | 11 | 8分钟 |
3 | 1分钟 | 12 | 9分钟 |
4 | 2分钟 | 13 | 10分钟 |
5 | 3分钟 | 14 | 20分钟 |
6 | 4分钟 | 15 | 30分钟 |
7 | 5分钟 | 16 | 1小时 |
8 | 6分钟 | 17 | 2小时 |
重试队列和死信队列
当消息消费失败,会被发送到重试队列
当消息消费失败,并达到最大重试次数,rocketmq并不会将消息丢弃,而是将消息发送到死信队列
死信队列有以下特色
-
里面存的是不能被正常消费的消息 -
有效期与正常消息相同,都是3天,3天后会被删除 -
每一个死信队列对应一个Consumer Group ID,即死信队列是消费者组级别的 -
若是一个Consumer Group没有产生死信消息,则RocketMQ不会建立对应的死信队列 -
死信队列包含了一个Consumer Group下的全部死信消息,无论该消息属于哪一个Topic
重试队列的命名为 %RETRY%消费组名称 死信队列的命名为 %DLQ%消费组名称
RocketMQ高性能和高可用的方式
总体架构
rocketmq是经过broker主从机制来实现高可用的。相同broker名称,不一样brokerid的机器组成一个broker组,brokerId=0代表这个broker是master,brokerId>0代表这个broker是slave。
消息生产的高可用:建立topic时,把topic的多个message queue建立在多个broker组上。这样当一个broker组的master不可用后,producer仍然能够给其余组的master发送消息。rocketmq目前还不支持主从切换,须要手动切换
消息消费的高可用:consumer并不能配置从master读仍是slave读。当master不可用或者繁忙的时候consumer会被自动切换到从slave读。这样当master出现故障后,consumer仍然能够从slave读,保证了消息消费的高可用
消息存储结构
RocketMQ须要保证消息的高可靠性,因此要将数据经过磁盘进行持久化存储。
将数据存到磁盘会不会很慢?其实磁盘有时候比你想象的快,有时候比你想象的慢。目前高性能磁盘的顺序写速度能够达到600M/s,而磁盘的随机写大概只有100k/s,和顺序写的性能相差6000倍,因此RocketMQ采用顺序写。
而且经过mmap(零拷贝的一种实现方式,零拷贝能够省去用户态到内核态的数据拷贝,提升速度)具体原理并非很懂,有兴趣的小伙伴能够看看相关书籍
总而言之,RocketMQ经过顺序写和零拷贝技术实现了高性能的消息存储和消息相关的文件有以下几种
-
CommitLog:存储消息的元数据 -
ConsumerQueue:存储消息在CommitLog的索引 -
IndexFile:提供了一种经过key或者时间区间来查询消息的方法
刷盘机制

-
同步刷盘:消息被写入内存的PAGECACHE,返回写成功状态,当内存里的消息量积累到必定程度时,统一触发写磁盘操做,快速写入 。吞吐量低,但不会形成消息丢失 -
异步刷盘:消息写入内存的PAGECACHE后,马上通知刷盘线程刷盘,而后等待刷盘完成,刷盘线程执行完成后唤醒等待的线程,给应用返回消息写成功的状态。吞吐量高,当磁盘损坏时,会丢失消息
主从复制
若是一个broker有master和slave时,就须要将master上的消息复制到slave上,复制的方式有两种
-
同步复制:master和slave均写成功,才返回客户端成功。maste挂了之后能够保证数据不丢失,可是同步复制会增长数据写入延迟,下降吞吐量 -
异步复制:master写成功,返回客户端成功。拥有较低的延迟和较高的吞吐量,可是当master出现故障后,有可能形成数据丢失
负载均衡
Producer负载均衡
producer在发送消息时,默认轮询全部queue,消息就会被发送到不一样的queue上。而queue能够分布在不一样的broker上
Consumer负载均衡
默认的分配算法是AllocateMessageQueueAveragely,以下图还有另一种平均的算法是AllocateMessageQueueAveragelyByCircle,也是平均分摊queue,只是以环状轮流分queue的形式,以下图:
若是consumer数量比message queue还多,则多会来的consumer会被闲置。因此不要让consumer的数量多于message queue的数量
图形化管理工具
在rocketmq-externals这个项目中提供了rocketmq的不少扩展工具
github地址以下:https://github.com/apache/rocketmq-externals
其中有一个子项目rocketmq-console提供了rocketmq的图像化工具,提供了不少实用的功能,如前面说的经过Topic,Message Id或Key来查询消息,从新发送消息等,仍是很方便的
本文分享自微信公众号 - Java识堂(erlieStar)。
若有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一块儿分享。