C++11 并发指南六(atomic 类型详解一 atomic_flag 介绍) 一文介绍了 C++11 中最简单的原子类型 std::atomic_flag,可是 std::atomic_flag 过于简单,只提供了 test_and_set 和 clear 两个 API,不能知足其余需求(如 store, load, exchange, compare_exchange 等),所以本文将介绍功能更加完善的 std::atomic 类。html
std::atomic 是模板类,一个模板类型为 T 的原子对象中封装了一个类型为 T 的值。node
template <class T> struct atomic;
原子类型对象的主要特色就是从不一样线程访问不会致使数据竞争(data race)。所以从不一样线程访问某个原子对象是良性 (well-defined) 行为,而一般对于非原子类型而言,并发访问某个对象(若是不作任何同步操做)会致使未定义 (undifined) 行为发生。ios
C++11 标准中的基本 std::atomic 模板定义以下:算法
template < class T > struct atomic { bool is_lock_free() const volatile; bool is_lock_free() const; void store(T, memory_order = memory_order_seq_cst) volatile; void store(T, memory_order = memory_order_seq_cst); T load(memory_order = memory_order_seq_cst) const volatile; T load(memory_order = memory_order_seq_cst) const; operator T() const volatile; operator T() const; T exchange(T, memory_order = memory_order_seq_cst) volatile; T exchange(T, memory_order = memory_order_seq_cst); bool compare_exchange_weak(T &, T, memory_order, memory_order) volatile; bool compare_exchange_weak(T &, T, memory_order, memory_order); bool compare_exchange_strong(T &, T, memory_order, memory_order) volatile; bool compare_exchange_strong(T &, T, memory_order, memory_order); bool compare_exchange_weak(T &, T, memory_order = memory_order_seq_cst) volatile; bool compare_exchange_weak(T &, T, memory_order = memory_order_seq_cst); bool compare_exchange_strong(T &, T, memory_order = memory_order_seq_cst) volatile; bool compare_exchange_strong(T &, T, memory_order = memory_order_seq_cst); atomic() = default; constexpr atomic(T); atomic(const atomic &) = delete; atomic & operator=(const atomic &) = delete; atomic & operator=(const atomic &) volatile = delete; T operator=(T) volatile; T operator=(T); };
另外,C++11 标准库 std::atomic 提供了针对整形(integral)和指针类型的特化实现,分别定义以下:并发
针对整形(integal)的特化,其中 integal 表明了以下类型char, signed char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, long long, unsigned long long, char16_t, char32_t, wchar_t:app
template <> struct atomic<integral> { bool is_lock_free() const volatile; bool is_lock_free() const; void store(integral, memory_order = memory_order_seq_cst) volatile; void store(integral, memory_order = memory_order_seq_cst); integral load(memory_order = memory_order_seq_cst) const volatile; integral load(memory_order = memory_order_seq_cst) const; operator integral() const volatile; operator integral() const; integral exchange(integral, memory_order = memory_order_seq_cst) volatile; integral exchange(integral, memory_order = memory_order_seq_cst); bool compare_exchange_weak(integral&, integral, memory_order, memory_order) volatile; bool compare_exchange_weak(integral&, integral, memory_order, memory_order); bool compare_exchange_strong(integral&, integral, memory_order, memory_order) volatile; bool compare_exchange_strong(integral&, integral, memory_order, memory_order); bool compare_exchange_weak(integral&, integral, memory_order = memory_order_seq_cst) volatile; bool compare_exchange_weak(integral&, integral, memory_order = memory_order_seq_cst); bool compare_exchange_strong(integral&, integral, memory_order = memory_order_seq_cst) volatile; bool compare_exchange_strong(integral&, integral, memory_order = memory_order_seq_cst); integral fetch_add(integral, memory_order = memory_order_seq_cst) volatile; integral fetch_add(integral, memory_order = memory_order_seq_cst); integral fetch_sub(integral, memory_order = memory_order_seq_cst) volatile; integral fetch_sub(integral, memory_order = memory_order_seq_cst); integral fetch_and(integral, memory_order = memory_order_seq_cst) volatile; integral fetch_and(integral, memory_order = memory_order_seq_cst); integral fetch_or(integral, memory_order = memory_order_seq_cst) volatile; integral fetch_or(integral, memory_order = memory_order_seq_cst); integral fetch_xor(integral, memory_order = memory_order_seq_cst) volatile; integral fetch_xor(integral, memory_order = memory_order_seq_cst); atomic() = default; constexpr atomic(integral); atomic(const atomic&) = delete; atomic& operator=(const atomic&) = delete; atomic& operator=(const atomic&) volatile = delete; integral operator=(integral) volatile; integral operator=(integral); integral operator++(int) volatile; integral operator++(int); integral operator--(int) volatile; integral operator--(int); integral operator++() volatile; integral operator++(); integral operator--() volatile; integral operator--(); integral operator+=(integral) volatile; integral operator+=(integral); integral operator-=(integral) volatile; integral operator-=(integral); integral operator&=(integral) volatile; integral operator&=(integral); integral operator|=(integral) volatile; integral operator|=(integral); integral operator^=(integral) volatile; integral operator^=(integral); };
针对指针的特化:函数
template <class T> struct atomic<T*> { bool is_lock_free() const volatile; bool is_lock_free() const; void store(T*, memory_order = memory_order_seq_cst) volatile; void store(T*, memory_order = memory_order_seq_cst); T* load(memory_order = memory_order_seq_cst) const volatile; T* load(memory_order = memory_order_seq_cst) const; operator T*() const volatile; operator T*() const; T* exchange(T*, memory_order = memory_order_seq_cst) volatile; T* exchange(T*, memory_order = memory_order_seq_cst); bool compare_exchange_weak(T*&, T*, memory_order, memory_order) volatile; bool compare_exchange_weak(T*&, T*, memory_order, memory_order); bool compare_exchange_strong(T*&, T*, memory_order, memory_order) volatile; bool compare_exchange_strong(T*&, T*, memory_order, memory_order); bool compare_exchange_weak(T*&, T*, memory_order = memory_order_seq_cst) volatile; bool compare_exchange_weak(T*&, T*, memory_order = memory_order_seq_cst); bool compare_exchange_strong(T*&, T*, memory_order = memory_order_seq_cst) volatile; bool compare_exchange_strong(T*&, T*, memory_order = memory_order_seq_cst); T* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst) volatile; T* fetch_add(ptrdiff_t, memory_order = memory_order_seq_cst); T* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst) volatile; T* fetch_sub(ptrdiff_t, memory_order = memory_order_seq_cst); atomic() = default; constexpr atomic(T*); atomic(const atomic&) = delete; atomic& operator=(const atomic&) = delete; atomic& operator=(const atomic&) volatile = delete; T* operator=(T*) volatile; T* operator=(T*); T* operator++(int) volatile; T* operator++(int); T* operator--(int) volatile; T* operator--(int); T* operator++() volatile; T* operator++(); T* operator--() volatile; T* operator--(); T* operator+=(ptrdiff_t) volatile; T* operator+=(ptrdiff_t); T* operator-=(ptrdiff_t) volatile; T* operator-=(ptrdiff_t); };
好了,对 std::atomic 有了一个最基本认识以后咱们来看 std::atomic 的成员函数吧。性能
std::atomic 的构造函数以下:fetch
default (1) | atomic() noexcept = default; |
---|---|
initialization (2) | constexpr atomic (T val) noexcept; |
copy [deleted] (3) | atomic (const atomic&) = delete; |
请看下例:ui
#include <iostream> // std::cout #include <atomic> // std::atomic, std::atomic_flag, ATOMIC_FLAG_INIT #include <thread> // std::thread, std::this_thread::yield #include <vector> // std::vector // 由 false 初始化一个 std::atomic<bool> 类型的原子变量 std::atomic<bool> ready(false); std::atomic_flag winner = ATOMIC_FLAG_INIT; void do_count1m(int id) { while (!ready) { std::this_thread::yield(); } // 等待 ready 变为 true. for (volatile int i=0; i<1000000; ++i) {} // 计数 if (!winner.test_and_set()) { std::cout << "thread #" << id << " won!\n"; } } int main () { std::vector<std::thread> threads; std::cout << "spawning 10 threads that count to 1 million...\n"; for (int i=1; i<=10; ++i) threads.push_back(std::thread(count1m,i)); ready = true; for (auto& th : threads) th.join(); return 0; }
std::atomic 的赋值操做函数定义以下:
set value (1) | T operator= (T val) noexcept; T operator= (T val) volatile noexcept; |
---|---|
copy [deleted] (2) | atomic& operator= (const atomic&) = delete; atomic& operator= (const atomic&) volatile = delete; |
能够看出,普通的赋值拷贝操做已经被禁用。可是一个类型为 T 的变量能够赋值给相应的原子类型变量(至关与隐式转换),该操做是原子的,内存序(Memory Order) 默认为顺序一致性(std::memory_order_seq_cst),若是须要指定其余的内存序,需使用 std::atomic::store()。
#include <iostream> // std::cout #include <atomic> // std::atomic #include <thread> // std::thread, std::this_thread::yield std::atomic <int> foo = 0; void set_foo(int x) { foo = x; // 调用 std::atomic::operator=(). } void print_foo() { while (foo == 0) { // wait while foo == 0 std::this_thread::yield(); } std::cout << "foo: " << foo << '\n'; } int main() { std::thread first(print_foo); std::thread second(set_foo, 10); first.join(); second.join(); return 0; }
本节主要介绍基本 std::atomic 类型所具有的操做(即成员函数)。咱们知道 std::atomic 是模板类,一个模板类型为 T 的原子对象中封装了一个类型为 T 的值。本文<std::atomic 基本介绍>一节中也提到了 std::atomic 类模板除了基本类型之外,还针对整形和指针类型作了特化。 特化的 std::atomic 类型支持更多的操做,如 fetch_add, fetch_sub, fetch_and 等。本小节介绍基本 std::atomic 类型所具有的操做:
bool is_lock_free() const volatile noexcept; bool is_lock_free() const noexcept;
void store (T val, memory_order sync = memory_order_seq_cst) volatile noexcept; void store (T val, memory_order sync = memory_order_seq_cst) noexcept;
Memory Order 值 | Memory Order 类型 |
---|---|
memory_order_relaxed | Relaxed |
memory_order_release | Release |
memory_order_seq_cst | Sequentially consistent |
#include <iostream> // std::cout #include <atomic> // std::atomic, std::memory_order_relaxed #include <thread> // std::thread std::atomic<int> foo(0); // 全局的原子对象 foo void set_foo(int x) { foo.store(x, std::memory_order_relaxed); // 设置(store) 原子对象 foo 的值 } void print_foo() { int x; do { x = foo.load(std::memory_order_relaxed); // 读取(load) 原子对象 foo 的值 } while (x == 0); std::cout << "foo: " << x << '\n'; } int main () { std::thread first(print_foo); // 线程 first 打印 foo 的值 std::thread second(set_foo, 10); // 线程 second 设置 foo 的值 first.join(); second.join(); return 0; }
T load (memory_order sync = memory_order_seq_cst) const volatile noexcept; T load (memory_order sync = memory_order_seq_cst) const noexcept;
Memory Order 值 | Memory Order 类型 |
---|---|
memory_order_relaxed | Relaxed |
memory_order_consume | Consume |
memory_order_acquire | Acquire |
memory_order_seq_cst | Sequentially consistent |
#include <iostream> // std::cout #include <atomic> // std::atomic, std::memory_order_relaxed #include <thread> // std::thread std::atomic<int> foo(0); // 全局的原子对象 foo void set_foo(int x) { foo.store(x, std::memory_order_relaxed); // 设置(store) 原子对象 foo 的值 } void print_foo() { int x; do { x = foo.load(std::memory_order_relaxed); // 读取(load) 原子对象 foo 的值 } while (x == 0); std::cout << "foo: " << x << '\n'; } int main () { std::thread first(print_foo); // 线程 first 打印 foo 的值 std::thread second(set_foo, 10); // 线程 second 设置 foo 的值 first.join(); second.join(); return 0; }
operator T() const volatile noexcept; operator T() const noexcept;
#include <iostream> // std::cout #include <atomic> // std::atomic #include <thread> // std::thread, std::this_thread::yield std::atomic<int> foo = 0; std::atomic<int> bar = 0; void set_foo(int x) { foo = x; } void copy_foo_to_bar() { // 若是 foo == 0,则该线程 yield, // 在 foo == 0 时, 实际也是隐含了类型转换操做, // 所以也包含了 operator T() const 的调用. while (foo == 0) std::this_thread::yield(); // 实际调用了 operator T() const, 将foo 强制转换成 int 类型, // 而后调用 operator=(). bar = static_cast<int>(foo); } void print_bar() { // 若是 bar == 0,则该线程 yield, // 在 bar == 0 时, 实际也是隐含了类型转换操做, // 所以也包含了 operator T() const 的调用. while (bar == 0) std::this_thread::yield(); std::cout << "bar: " << bar << '\n'; } int main () { std::thread first(print_bar); std::thread second(set_foo, 10); std::thread third(copy_foo_to_bar); first.join(); second.join(); third.join(); return 0; }
T exchange (T val, memory_order sync = memory_order_seq_cst) volatile noexcept; T exchange (T val, memory_order sync = memory_order_seq_cst) noexcept;
Memory Order 值 | Memory Order 类型 |
---|---|
memory_order_relaxed | Relaxed |
memory_order_consume | Consume |
memory_order_acquire | Acquire |
memory_order_release | Release |
memory_order_acq_rel | Acquire/Release |
memory_order_seq_cst | Sequentially consistent |
请看下面例子,各个线程计数至 1M,首先完成计数任务的线程打印本身的 ID,
#include <iostream> // std::cout #include <atomic> // std::atomic #include <thread> // std::thread #include <vector> // std::vector std::atomic<bool> ready(false); std::atomic<bool> winner(false); void count1m (int id) { while (!ready) {} // wait for the ready signal for (int i = 0; i < 1000000; ++i) {} // go!, count to 1 million if (!winner.exchange(true)) { std::cout << "thread #" << id << " won!\n"; } }; int main () { std::vector<std::thread> threads; std::cout << "spawning 10 threads that count to 1 million...\n"; for (int i = 1; i <= 10; ++i) threads.push_back(std::thread(count1m,i)); ready = true; for (auto& th : threads) th.join(); return 0; }
(1) | bool compare_exchange_weak (T& expected, T val, memory_order sync = memory_order_seq_cst) volatile noexcept; bool compare_exchange_weak (T& expected, T val, memory_order sync = memory_order_seq_cst) noexcept; |
---|---|
(2) | bool compare_exchange_weak (T& expected, T val, memory_order success, memory_order failure) volatile noexcept; bool compare_exchange_weak (T& expected, T val, memory_order success, memory_order failure) noexcept; |
expected 的值不会改变。
Memory Order 值 | Memory Order 类型 |
---|---|
memory_order_relaxed | Relaxed |
memory_order_consume | Consume |
memory_order_acquire | Acquire |
memory_order_release | Release |
memory_order_acq_rel | Acquire/Release |
memory_order_seq_cst | Sequentially consistent |
#include <iostream> // std::cout #include <atomic> // std::atomic #include <thread> // std::thread #include <vector> // std::vector // a simple global linked list: struct Node { int value; Node* next; }; std::atomic<Node*> list_head(nullptr); void append(int val) { // append an element to the list Node* newNode = new Node{val, list_head}; // next is the same as: list_head = newNode, but in a thread-safe way: while (!list_head.compare_exchange_weak(newNode->next,newNode)) {} // (with newNode->next updated accordingly if some other thread just appended another node) } int main () { // spawn 10 threads to fill the linked list: std::vector<std::thread> threads; for (int i = 0; i < 10; ++i) threads.push_back(std::thread(append, i)); for (auto& th : threads) th.join(); // print contents: for (Node* it = list_head; it!=nullptr; it=it->next) std::cout << ' ' << it->value; std::cout << '\n'; // cleanup: Node* it; while (it=list_head) {list_head=it->next; delete it;} return 0; }
9 8 7 6 5 4 3 2 1 0
(1) | bool compare_exchange_strong (T& expected, T val, memory_order sync = memory_order_seq_cst) volatile noexcept; bool compare_exchange_strong (T& expected, T val, memory_order sync = memory_order_seq_cst) noexcept; |
---|---|
(2) | bool compare_exchange_strong (T& expected, T val, memory_order success, memory_order failure) volatile noexcept; bool compare_exchange_strong (T& expected, T val, memory_order success, memory_order failure) noexcept; |
Memory Order 值 | Memory Order 类型 |
---|---|
memory_order_relaxed | Relaxed |
memory_order_consume | Consume |
memory_order_acquire | Acquire |
memory_order_release | Release |
memory_order_acq_rel | Acquire/Release |
memory_order_seq_cst | Sequentially consistent |
#include <iostream> // std::cout #include <atomic> // std::atomic #include <thread> // std::thread #include <vector> // std::vector // a simple global linked list: struct Node { int value; Node* next; }; std::atomic<Node*> list_head(nullptr); void append(int val) { // append an element to the list Node* newNode = new Node{val, list_head}; // next is the same as: list_head = newNode, but in a thread-safe way: while (!(list_head.compare_exchange_strong(newNode->next, newNode))); // (with newNode->next updated accordingly if some other thread just appended another node) } int main () { // spawn 10 threads to fill the linked list: std::vector<std::thread> threads; for (int i = 0; i < 10; ++i) threads.push_back(std::thread(append, i)); for (auto& th : threads) th.join(); // print contents: for (Node* it = list_head; it!=nullptr; it=it->next) std::cout << ' ' << it->value; std::cout << '\n'; // cleanup: Node* it; while (it=list_head) {list_head=it->next; delete it;} return 0; }
好了,本文花了大量的篇幅介绍 std::atomic 基本类型,下一篇博客我会给你们介绍 C++11 的标准库中std::atomic 针对整形(integral)和指针类型的特化版本作了哪些改进。