第八章

异常处理

  • 一 错误和异常
  • 二 异常处理
  • 三 何时用异常处理

html

  • 2.2 import 
  • 2.3 from ... import ...
  • 2.4 __init__.py文件
  • 2.5  from glance.api import *
  • 2.6 绝对导入和相对导入
  • 2.7 单独导入包

 

网络编程

  • 二.客户端/服务端架构
  • 三.网络基础
  • 四.套接字(socket)初使用
  • 五.黏包
  • 六.socket的更多方法介绍
  • 七.验证客户端连接的合法性
  • 八.socketserver模块
 
 

异常和错误

part1:程序中不免出现错误,而错误分红两种

1.语法错误(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正)python

#语法错误示范一
if

#语法错误示范二
def test:
    pass

#语法错误示范三
print(haha

2.逻辑错误(逻辑错误)mysql

#用户输入不完整(好比输入为空)或者输入非法(输入不是数字)
num=input(">>: ")
int(num)

#没法完成计算
res1=1/0
res2=1+'str'

 

part2:什么是异常

异常就是程序运行时发生错误的信号,在python中,错误触发的异常以下git

 

part3:python中的异常种类

在python中不一样的异常能够用不一样的类型(python中统一了类与类型,类型即类)去标识,不一样的类对象标识不一样的异常,一个异常标识一种错误程序员

l=['egon','aa']
l[3]

dic={'name':'egon'}
dic['age']

s='hello'
int(s)

AttributeError 试图访问一个对象没有的树形,好比foo.x,可是foo没有属性x
IOError 输入/输出异常;基本上是没法打开文件
ImportError 没法引入模块或包;基本上是路径问题或名称错误
IndentationError 语法错误(的子类) ;代码没有正确对齐
IndexError 下标索引超出序列边界,好比当x只有三个元素,却试图访问x[5]
KeyError 试图访问字典里不存在的键
KeyboardInterrupt Ctrl+C被按下
NameError 使用一个还未被赋予对象的变量
SyntaxError Python代码非法,代码不能编译(我的认为这是语法错误,写错了)
TypeError 传入对象类型与要求的不符合
UnboundLocalError 试图访问一个还未被设置的局部变量,基本上是因为另有一个同名的全局变量,
致使你觉得正在访问它
ValueError 传入一个调用者不指望的值,即便值的类型是正确的

异常处理

什么是异常?

异常发生以后web

异常以后的代码就不执行了算法

什么是异常处理

python解释器检测到错误,触发异常(也容许程序员本身触发异常)sql

程序员编写特定的代码,专门用来捕捉这个异常(这段代码与程序逻辑无关,与异常处理有关)shell

若是捕捉成功则进入另一个处理分支,执行你为其定制的逻辑,使程序不会崩溃,这就是异常处理数据库

为何要进行异常处理?

python解析器去执行程序,检测到了一个错误时,触发异常,异常触发后且没被处理的状况下,程序就在当前异常处终止,后面的代码不会运行,谁会去用一个运行着忽然就崩溃的软件。

因此你必须提供一种异常处理机制来加强你程序的健壮性与容错性 

如何进行异常处理?

首先须知,异常是由程序的错误引发的,语法上的错误跟异常处理无关,必须在程序运行前就修正

一: 使用if判断式

num1=input('>>: ') #输入一个字符串试试
int(num1)
#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'

num1=input('>>: ') #输入一个字符串试试
if num1.isdigit():
    int(num1) #咱们的正统程序放到了这里,其他的都属于异常处理范畴
elif num1.isspace():
    print('输入的是空格,就执行我这里的逻辑')
elif len(num1) == 0:
    print('输入的是空,就执行我这里的逻辑')
else:
    print('其余情状况,执行我这里的逻辑')

'''
问题一:
使用if的方式咱们只为第一段代码加上了异常处理,但这些if,跟你的代码逻辑并没有关系,这样你的代码会由于可读性差而不容易被看懂

问题二:
这只是咱们代码中的一个小逻辑,若是相似的逻辑多,那么每一次都须要判断这些内容,就会倒置咱们的代码特别冗长。
'''

总结:

1.if判断式的异常处理只能针对某一段代码,对于不一样的代码段的相同类型的错误你须要写重复的if来进行处理。

2.在你的程序中频繁的写与程序自己无关,与异常处理有关的if,会使得你的代码可读性极其的差

3.if是能够解决异常的,只是存在1,2的问题,因此,千万不要妄下定论if不能用来异常处理。

def test():
    print('test running')
choice_dic={
    '1':test
}
while True:
    choice=input('>>: ').strip()
    if not choice or choice not in choice_dic:continue #这即是一种异常处理机制啊
    choice_dic[choice]()

二:python为每一种异常定制了一个类型,而后提供了一种特定的语法结构用来进行异常处理

part1:基本语法

try:
     被检测的代码块
except 异常类型:
     try中一旦检测到异常,就执行这个位置的逻辑
f = open('a.txt')

g = (line.strip() for line in f)
for line in g:
    print(line)
else:
    f.close()
try:
    f = open('a.txt')
    g = (line.strip() for line in f)
    print(next(g))
    print(next(g))
    print(next(g))
    print(next(g))
    print(next(g))
except StopIteration:
    f.close()

'''
next(g)会触发迭代f,依次next(g)就能够读取文件的一行行内容,不管文件a.txt有多大,同一时刻内存中只有一行内容。
提示:g是基于文件句柄f而存在的,于是只能在next(g)抛出异常StopIteration后才能够执行f.close()
'''

part2:异常类只能用来处理指定的异常状况,若是非指定异常则没法处理。

# 未捕获到异常,程序直接报错
 
s1 = 'hello'
try:
    int(s1)
except IndexError as e:
    print e

part3:多分支

s1 = 'hello'
try:
    int(s1)
except IndexError as e:
    print(e)
except KeyError as e:
    print(e)
except ValueError as e:
    print(e)

part4:万能异常 在python的异常中,有一个万能异常:Exception,他能够捕获任意异常,即:

s1 = 'hello'
try:
    int(s1)
except Exception as e:
    print(e)

你可能会说既然有万能异常,那么我直接用上面的这种形式就行了,其余异常能够忽略

你说的没错,可是应该分两种状况去看

1.若是你想要的效果是,不管出现什么异常,咱们统一丢弃,或者使用同一段代码逻辑去处理他们,那么骚年,大胆的去作吧,只有一个Exception就足够了。

s1 = 'hello'
try:
    int(s1)
except Exception,e:
    '丢弃或者执行其余逻辑'
    print(e)

#若是你统一用Exception,没错,是能够捕捉全部异常,但意味着你在处理全部异常时都使用同一个逻辑去处理(这里说的逻辑即当前expect下面跟的代码块)

2.若是你想要的效果是,对于不一样的异常咱们须要定制不一样的处理逻辑,那就须要用到多分支了。

s1 = 'hello'
try:
    int(s1)
except IndexError as e:
    print(e)
except KeyError as e:
    print(e)
except ValueError as e:
    print(e)
s1 = 'hello'
try:
    int(s1)
except IndexError as e:
    print(e)
except KeyError as e:
    print(e)
except ValueError as e:
    print(e)
except Exception as e:
    print(e)

part5:异常的其余机构

s1 = 'hello'
try:
    int(s1)
except IndexError as e:
    print(e)
except KeyError as e:
    print(e)
except ValueError as e:
    print(e)
#except Exception as e:
#    print(e)
else:
    print('try内代码块没有异常则执行我')
finally:
    print('不管异常与否,都会执行该模块,一般是进行清理工做')

part6:主动触发异常

try:
    raise TypeError('类型错误')
except Exception as e:
    print(e)

part7:自定义异常

class EvaException(BaseException):
    def __init__(self,msg):
        self.msg=msg
    def __str__(self):
        return self.msg

try:
    raise EvaException('类型错误')
except EvaException as e:
    print(e)

part8:断言

# assert 条件
 
assert 1 == 1
 
assert 1 == 2

part9:try..except的方式比较if的方式的好处

try..except这种异常处理机制就是取代if那种方式,让你的程序在不牺牲可读性的前提下加强健壮性和容错性

异常处理中为每个异常定制了异常类型(python中统一了类与类型,类型即类),对于同一种异常,一个except就能够捕捉到,能够同时处理多段代码的异常(无需‘写多个if判断式’)减小了代码,加强了可读性 

 

使用try..except的方式

1:把错误处理和真正的工做分开来
2:代码更易组织,更清晰,复杂的工做任务更容易实现;
3:毫无疑问,更安全了,不至于因为一些小的疏忽而使程序意外崩溃了;

 

何时用异常处理

有的同窗会这么想,学完了异常处理后,好强大,我要为个人每一段程序都加上try...except,干毛线去思考它会不会有逻辑错误啊,这样就很好啊,多省脑细胞===》2B青年欢乐多

try...except应该尽可能少用,由于它自己就是你附加给你的程序的一种异常处理的逻辑,与你的主要的工做是没有关系的
这种东西加的多了,会致使你的代码可读性变差,只有在有些异常没法预知的状况下,才应该加上try...except,其余的逻辑错误应该尽可能修正

 

包是一种经过使用‘.模块名’来组织python模块名称空间的方式。

1. 不管是import形式仍是from...import形式,凡是在导入语句中(而不是在使用时)遇到带点的,都要第一时间提升警觉:这是关于包才有的导入语法

2. 包是目录级的(文件夹级),文件夹是用来组成py文件(包的本质就是一个包含__init__.py文件的目录)

3. import导入文件时,产生名称空间中的名字来源于文件,import 包,产生的名称空间的名字一样来源于文件,即包下的__init__.py,导入包本质就是在导入该文件

强调:

  1. 在python3中,即便包下没有__init__.py文件,import 包仍然不会报错,而在python2中,包下必定要有该文件,不然import 包报错

  2. 建立包的目的不是为了运行,而是被导入使用,记住,包只是模块的一种形式而已,包即模块


包A和包B下有同名模块也不会冲突,如A.a与B.a来自俩个命名空间

import os
os.makedirs('glance/api')
os.makedirs('glance/cmd')
os.makedirs('glance/db')
l = []
l.append(open('glance/__init__.py','w'))
l.append(open('glance/api/__init__.py','w'))
l.append(open('glance/api/policy.py','w'))
l.append(open('glance/api/versions.py','w'))
l.append(open('glance/cmd/__init__.py','w'))
l.append(open('glance/cmd/manage.py','w'))
l.append(open('glance/db/models.py','w'))
map(lambda f:f.close() ,l)

 

目录结构
glance/ #Top-level package ├── __init__.py #Initialize the glance package ├── api #Subpackage for api │ ├── __init__.py │ ├── policy.py │ └── versions.py ├── cmd #Subpackage for cmd │ ├── __init__.py │ └── manage.py └── db #Subpackage for db ├── __init__.py └── models.py
#文件内容

#policy.py
def get():
    print('from policy.py')

#versions.py
def create_resource(conf):
    print('from version.py: ',conf)

#manage.py
def main():
    print('from manage.py')

#models.py
def register_models(engine):
    print('from models.py: ',engine)

 

2.1 注意事项


1.关于包相关的导入语句也分为import和from ... import ...两种,可是不管哪一种,不管在什么位置,在导入时都必须遵循一个原则:凡是在导入时带点的,点的左边都必须是一个包,不然非法。能够带有一连串的点,如item.subitem.subsubitem,但都必须遵循这个原则。

2.对于导入后,在使用时就没有这种限制了,点的左边能够是包,模块,函数,类(它们均可以用点的方式调用本身的属性)。

3.对比import item 和from item import name的应用场景:
若是咱们想直接使用name那必须使用后者。

 

2.2 import 

咱们在与包glance同级别的文件中测试

1 import glance.db.models
2 glance.db.models.register_models('mysql') 
 

2.3 from ... import ...

须要注意的是from后import导入的模块,必须是明确的一个不能带点,不然会有语法错误,如:from a import b.c是错误语法

咱们在与包glance同级别的文件中测试 

1 from glance.db import models
2 models.register_models('mysql')
3 
4 from glance.db.models import register_models
5 register_models('mysql')
 

2.4 __init__.py文件

无论是哪一种方式,只要是第一次导入包或者是包的任何其余部分,都会依次执行包下的__init__.py文件(咱们能够在每一个包的文件内都打印一行内容来验证一下),这个文件能够为空,可是也能够存放一些初始化包的代码。

 

2.5  from glance.api import *

在讲模块时,咱们已经讨论过了从一个模块内导入全部*,此处咱们研究从一个包导入全部*。

此处是想从包api中导入全部,实际上该语句只会导入包api下__init__.py文件中定义的名字,咱们能够在这个文件中定义__all___:

#在__init__.py中定义
x=10

def func():
    print('from api.__init.py')

__all__=['x','func','policy']

 此时咱们在于glance同级的文件中执行from glance.api import *就导入__all__中的内容(versions仍然不能导入)。

 

from glance.api import *

glance/ ├── __init__.py ├── api │ ├── __init__.py __all__ = ['policy','versions'] │ ├── policy.py │ └── versions.py ├── cmd __all__ = ['manage'] │ ├── __init__.py │ └── manage.py └── db __all__ = ['models'] ├── __init__.py └── models.py from glance.api import * policy.get()

 

2.6 绝对导入和相对导入

咱们的最顶级包glance是写给别人用的,而后在glance包内部也会有彼此之间互相导入的需求,这时候就有绝对导入和相对导入两种方式:

绝对导入:以glance做为起始

相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不一样目录内)

例如:咱们在glance/api/version.py中想要导入glance/cmd/manage.py

在glance/api/version.py

#绝对导入
from glance.cmd import manage
manage.main()

#相对导入
from ..cmd import manage
manage.main()

测试结果:注意必定要在于glance同级的文件中测试

1 from glance.api import versions 

注意:在使用pycharm时,有的状况会为你多作一些事情,这是软件相关的东西,会影响你对模块导入的理解,于是在测试时,必定要回到命令行去执行,模拟咱们生产环境,你总不能拿着pycharm去上线代码吧!!!

 

特别须要注意的是:能够用import导入内置或者第三方模块(已经在sys.path中),可是要绝对避免使用import来导入自定义包的子模块(没有在sys.path中),应该使用from... import ...的绝对或者相对导入,且包的相对导入只能用from的形式。

好比咱们想在glance/api/versions.py中导入glance/api/policy.py,有的同窗一抽这俩模块是在同一个目录下,十分开心的就去作了,它直接这么作

1 #在version.py中
2 
3 import policy
4 policy.get()

 

没错,咱们单独运行version.py是一点问题没有的,运行version.py的路径搜索就是从当前路径开始的,因而在导入policy时能在当前目录下找到

可是你想啊,你子包中的模块version.py极有多是被一个glance包同一级别的其余文件导入,好比咱们在于glance同级下的一个test.py文件中导入version.py,以下

from glance.api import versions

'''
执行结果:
ImportError: No module named 'policy'
'''

'''
分析:
此时咱们导入versions在versions.py中执行
import policy须要找从sys.path也就是从当前目录找policy.py,
这必然是找不到的
'''
绝对导入

glance/ ├── __init__.py from glance import api from glance import cmd from glance import db ├── api │ ├── __init__.py from glance.api import policy from glance.api import versions │ ├── policy.py │ └── versions.py ├── cmd from glance.cmd import manage │ ├── __init__.py │ └── manage.py └── db from glance.db import models ├── __init__.py └── models.py
相对导入

glance/ ├── __init__.py from . import api #.表示当前目录 from . import cmd from . import db ├── api │ ├── __init__.py from . import policy from . import versions │ ├── policy.py │ └── versions.py ├── cmd from . import manage │ ├── __init__.py │ └── manage.py from ..api import policy #..表示上一级目录,想再manage中使用policy中的方法就须要回到上一级glance目录往下找api包,从api导入policy └── db from . import models ├── __init__.py └── models.py

 

2.7 单独导入包

单独导入包名称时不会导入包中全部包含的全部子模块,如

#在与glance同级的test.py中
import glance
glance.cmd.manage.main()

'''
执行结果:
AttributeError: module 'glance' has no attribute 'cmd'

'''

 

解决方法:

1 #glance/__init__.py
2 from . import cmd
3 
4 #glance/cmd/__init__.py
5 from . import manage

执行:

1 #在于glance同级的test.py中
2 import glance
3 glance.cmd.manage.main()

千万别问:__all__不能解决吗,__all__是用于控制from...import * 

import glance以后直接调用模块中的方法

import glance

glance/ ├── __init__.py from .api import * from .cmd import * from .db import * ├── api │ ├── __init__.py __all__ = ['policy','versions'] │ ├── policy.py │ └── versions.py ├── cmd __all__ = ['manage'] │ ├── __init__.py │ └── manage.py └── db __all__ = ['models'] ├── __init__.py └── models.py import glance policy.get()

软件开发规范

#=============>bin目录:存放执行脚本
#start.py
import sys,os

BASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)

from core import core
from conf import my_log_settings

if __name__ == '__main__':
    my_log_settings.load_my_logging_cfg()
    core.run()

#=============>conf目录:存放配置文件
#config.ini
[DEFAULT]
user_timeout = 1000

[egon]
password = 123
money = 10000000

[alex]
password = alex3714
money=10000000000

[yuanhao]
password = ysb123
money=10

#settings.py
import os
config_path=r'%s\%s' %(os.path.dirname(os.path.abspath(__file__)),'config.ini')
user_timeout=10
user_db_path=r'%s\%s' %(os.path.dirname(os.path.dirname(os.path.abspath(__file__))),\
                     'db')


#my_log_settings.py
"""
logging配置
"""

import os
import logging.config

# 定义三种日志输出格式 开始

standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
                  '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字

simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'

id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'

# 定义日志输出格式 结束

logfile_dir = r'%s\log' %os.path.dirname(os.path.dirname(os.path.abspath(__file__)))  # log文件的目录

logfile_name = 'all2.log'  # log文件名

# 若是不存在定义的日志目录就建立一个
if not os.path.isdir(logfile_dir):
    os.mkdir(logfile_dir)

# log文件的全路径
logfile_path = os.path.join(logfile_dir, logfile_name)

# log配置字典
LOGGING_DIC = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'standard': {
            'format': standard_format
        },
        'simple': {
            'format': simple_format
        },
    },
    'filters': {},
    'handlers': {
        #打印到终端的日志
        'console': {
            'level': 'DEBUG',
            'class': 'logging.StreamHandler',  # 打印到屏幕
            'formatter': 'simple'
        },
        #打印到文件的日志,收集info及以上的日志
        'default': {
            'level': 'DEBUG',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件
            'formatter': 'standard',
            'filename': logfile_path,  # 日志文件
            'maxBytes': 1024*1024*5,  # 日志大小 5M
            'backupCount': 5,
            'encoding': 'utf-8',  # 日志文件的编码,不再用担忧中文log乱码了
        },
    },
    'loggers': {
        #logging.getLogger(__name__)拿到的logger配置
        '': {
            'handlers': ['default', 'console'],  # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
            'level': 'DEBUG',
            'propagate': True,  # 向上(更高level的logger)传递
        },
    },
}


def load_my_logging_cfg():
    logging.config.dictConfig(LOGGING_DIC)  # 导入上面定义的logging配置
    logger = logging.getLogger(__name__)  # 生成一个log实例
    logger.info('It works!')  # 记录该文件的运行状态

if __name__ == '__main__':
    load_my_logging_cfg()

#=============>core目录:存放核心逻辑
#core.py
import logging
import time
from conf import settings
from lib import read_ini

config=read_ini.read(settings.config_path)
logger=logging.getLogger(__name__)

current_user={'user':None,'login_time':None,'timeout':int(settings.user_timeout)}
def auth(func):
    def wrapper(*args,**kwargs):
        if current_user['user']:
            interval=time.time()-current_user['login_time']
            if interval < current_user['timeout']:
                return func(*args,**kwargs)
        name = input('name>>: ')
        password = input('password>>: ')
        if config.has_section(name):
            if password == config.get(name,'password'):
                logger.info('登陆成功')
                current_user['user']=name
                current_user['login_time']=time.time()
                return func(*args,**kwargs)
        else:
            logger.error('用户名不存在')

    return wrapper

@auth
def buy():
    print('buy...')

@auth
def run():

    print('''
购物
查看余额
转帐
    ''')
    while True:
        choice = input('>>: ').strip()
        if not choice:continue
        if choice == '1':
            buy()



if __name__ == '__main__':
    run()

#=============>db目录:存放数据库文件
#alex_json
#egon_json

#=============>lib目录:存放自定义的模块与包
#read_ini.py
import configparser
def read(config_file):
    config=configparser.ConfigParser()
    config.read(config_file)
    return config

#=============>log目录:存放日志
#all2.log
[2017-07-29 00:31:40,272][MainThread:11692][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!]
[2017-07-29 00:31:41,789][MainThread:11692][task_id:core.core][core.py:25][ERROR][用户名不存在]
[2017-07-29 00:31:46,394][MainThread:12348][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!]
[2017-07-29 00:31:47,629][MainThread:12348][task_id:core.core][core.py:25][ERROR][用户名不存在]
[2017-07-29 00:31:57,912][MainThread:10528][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!]
[2017-07-29 00:32:03,340][MainThread:12744][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!]
[2017-07-29 00:32:05,065][MainThread:12916][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!]
[2017-07-29 00:32:08,181][MainThread:12916][task_id:core.core][core.py:25][ERROR][用户名不存在]
[2017-07-29 00:32:13,638][MainThread:7220][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!]
[2017-07-29 00:32:23,005][MainThread:7220][task_id:core.core][core.py:20][INFO][登陆成功]
[2017-07-29 00:32:40,941][MainThread:7220][task_id:core.core][core.py:20][INFO][登陆成功]
[2017-07-29 00:32:47,222][MainThread:7220][task_id:core.core][core.py:20][INFO][登陆成功]
[2017-07-29 00:32:51,949][MainThread:7220][task_id:core.core][core.py:25][ERROR][用户名不存在]
[2017-07-29 00:33:00,213][MainThread:7220][task_id:core.core][core.py:20][INFO][登陆成功]
[2017-07-29 00:33:50,118][MainThread:8500][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!]
[2017-07-29 00:33:55,845][MainThread:8500][task_id:core.core][core.py:20][INFO][登陆成功]
[2017-07-29 00:34:06,837][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在]
[2017-07-29 00:34:09,405][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在]
[2017-07-29 00:34:10,645][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在]

 

 

你如今已经学会了写python代码,假如你写了两个python文件a.py和b.py,分别去运行,你就会发现,这两个python的文件分别运行的很好。可是若是这两个程序之间想要传递一个数据,你要怎么作呢?

这个问题以你如今的知识就能够解决了,咱们能够建立一个文件,把a.py想要传递的内容写到文件中,而后b.py从这个文件中读取内容就能够了。

 

可是当你的a.py和b.py分别在不一样电脑上的时候,你要怎么办呢?

相似的机制有计算机网盘,qq等等。咱们能够在咱们的电脑上和别人聊天,能够在本身的电脑上向网盘中上传、下载内容。这些都是两个程序在通讯。

 

 

二.软件开发的架构

咱们了解的涉及到两个程序之间通信的应用大体能够分为两种:

第一种是应用类:qq、微信、网盘、优酷这一类是属于须要安装的桌面应用

第二种是web类:好比百度、知乎、博客园等使用浏览器访问就能够直接使用的应用

这些应用的本质其实都是两个程序之间的通信。而这两个分类又对应了两个软件开发的架构~

1.C/S架构

C/S即:Client与Server ,中文意思:客户端与服务器端架构,这种架构也是从用户层面(也能够是物理层面)来划分的。

这里的客户端通常泛指客户端应用程序EXE,程序须要先安装后,才能运行在用户的电脑上,对用户的电脑操做系统环境依赖较大。

 

 

2.B/S架构

B/S即:Browser与Server,中文意思:浏览器端与服务器端架构,这种架构是从用户层面来划分的。

Browser浏览器,其实也是一种Client客户端,只是这个客户端不须要你们去安装什么应用程序,只需在浏览器上经过HTTP请求服务器端相关的资源(网页资源),客户端Browser浏览器就能进行增删改查。

 

三.网络基础

网络基础

1.一个程序如何在网络上找到另外一个程序?

首先,程序必需要启动,其次,必须有这台机器的地址,咱们都知道咱们人的地址大概就是国家\省\市\区\街道\楼\门牌号这样字。那么每一台联网的机器在网络上也有本身的地址,它的地址是怎么表示的呢?

就是使用一串数字来表示的,例如:100.4.5.6

所以ip地址精确到具体的一台电脑,而端口精确到具体的程序。

2.osi七层模型

引子

须知一个完整的计算机系统是由硬件、操做系统、应用软件三者组成,具有了这三个条件,一台计算机系统就能够本身跟本身玩了(打个单机游戏,玩个扫雷啥的)

若是你要跟别人一块儿玩,那你就须要上网了,什么是互联网?

互联网的核心就是由一堆协议组成,协议就是标准,好比全世界人通讯的标准是英语,若是把计算机比做人,互联网协议就是计算机界的英语。全部的计算机都学会了互联网协议,那全部的计算机都就能够按照统一的标准去收发信息从而完成通讯了。

osi七层模型

人们按照分工不一样把互联网协议从逻辑上划分了层级:

 

 

3.socket概念

socket层

理解socket

Socket是应用层与TCP/IP协议族通讯的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来讲,一组简单的接口就是所有,让Socket去组织数据,以符合指定的协议。

其实站在你的角度上看,socket就是一个模块。咱们经过调用模块中已经实现的方法创建两个进程之间的链接和通讯。
也有人将socket说成ip+port,由于ip是用来标识互联网中的一台主机的位置,而port是用来标识这台机器上的一个应用程序。
因此咱们只要确立了ip和port就能找到一个应用程序,而且使用socket模块来与之通讯。

3.套接字(socket)的发展史

套接字起源于 20 世纪 70 年代加利福尼亚大学伯克利分校版本的 Unix,即人们所说的 BSD Unix。 所以,有时人们也把套接字称为“伯克利套接字”或“BSD 套接字”。一开始,套接字被设计用在同 一台主机上多个应用程序之间的通信。这也被称进程间通信,或 IPC。套接字有两种(或者称为有两个种族),分别是基于文件型的和基于网络型的。 

基于文件类型的套接字家族

套接字家族的名字:AF_UNIX

unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,能够经过访问同一个文件系统间接完成通讯

基于网络类型的套接字家族

套接字家族的名字:AF_INET

(还有AF_INET6被用于ipv6,还有一些其余的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是不多被使用,或者是根本没有实现,全部地址家族中,AF_INET是使用最普遍的一个,python支持不少种地址家族,可是因为咱们只关心网络编程,因此大部分时候我么只使用AF_INET)

 

4.tcp协议和udp协议

TCP(Transmission Control Protocol)可靠的、面向链接的协议(eg:打电话)、传输效率低全双工通讯(发送缓存&接收缓存)、面向字节流。使用TCP的应用:Web浏览器;电子邮件、文件传输程序。

UDP(User Datagram Protocol)不可靠的、无链接的服务,传输效率高(发送前时延小),一对1、一对多、多对1、多对多、面向报文,尽最大努力服务,无拥塞控制。使用UDP的应用:域名系统 (DNS);视频流;IP语音(VoIP)。

我知道说这些大家也不懂,直接上图。

四.套接字(socket)初使用

基于TCP协议的socket

tcp是基于连接的,必须先启动服务端,而后再启动客户端去连接服务端

server端

import socket
sk = socket.socket()
sk.bind(('127.0.0.1',8898))  #把地址绑定到套接字
sk.listen()          #监听连接
conn,addr = sk.accept() #接受客户端连接
ret = conn.recv(1024)  #接收客户端信息
print(ret)       #打印客户端信息
conn.send(b'hi')        #向客户端发送信息
conn.close()       #关闭客户端套接字
sk.close()        #关闭服务器套接字(可选)

client端

import socket
sk = socket.socket()           # 建立客户套接字
sk.connect(('127.0.0.1',8898))    # 尝试链接服务器
sk.send(b'hello!')
ret = sk.recv(1024)         # 对话(发送/接收)
print(ret)
sk.close()            # 关闭客户套接字

 

问题:有的同窗在重启服务端时可能会遇到

解决方法:

#加入一条socket配置,重用ip和端口
import socket
from socket import SOL_SOCKET,SO_REUSEADDR
sk = socket.socket()
sk.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #就是它,在bind前加
sk.bind(('127.0.0.1',8898))  #把地址绑定到套接字
sk.listen()          #监听连接
conn,addr = sk.accept() #接受客户端连接
ret = conn.recv(1024)   #接收客户端信息
print(ret)              #打印客户端信息
conn.send(b'hi')        #向客户端发送信息
conn.close()       #关闭客户端套接字
sk.close()        #关闭服务器套接字(可选)

  

基于UDP协议的socket

udp是无连接的,启动服务以后能够直接接受消息不须要提早创建连接

简单使用

server端

import socket
udp_sk = socket.socket(type=socket.SOCK_DGRAM)   #建立一个服务器的套接字
udp_sk.bind(('127.0.0.1',9000))        #绑定服务器套接字
msg,addr = udp_sk.recvfrom(1024)
print(msg)
udp_sk.sendto(b'hi',addr)                 # 对话(接收与发送)
udp_sk.close()                         # 关闭服务器套接字

client端

import socket
ip_port=('127.0.0.1',9000)
udp_sk=socket.socket(type=socket.SOCK_DGRAM)
udp_sk.sendto(b'hello',ip_port)
back_msg,addr=udp_sk.recvfrom(1024)
print(back_msg.decode('utf-8'),addr)

 qq聊天

#_*_coding:utf-8_*_
import socket
ip_port=('127.0.0.1',8081)
udp_server_sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
udp_server_sock.bind(ip_port)

while True:
    qq_msg,addr=udp_server_sock.recvfrom(1024)
    print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],qq_msg.decode('utf-8')))
    back_msg=input('回复消息: ').strip()

    udp_server_sock.sendto(back_msg.encode('utf-8'),addr)
#_*_coding:utf-8_*_
import socket
BUFSIZE=1024
udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

qq_name_dic={
    '金老板':('127.0.0.1',8081),
    '哪吒':('127.0.0.1',8081),
    'egg':('127.0.0.1',8081),
    'yuan':('127.0.0.1',8081),
}


while True:
    qq_name=input('请选择聊天对象: ').strip()
    while True:
        msg=input('请输入消息,回车发送,输入q结束和他的聊天: ').strip()
        if msg == 'q':break
        if not msg or not qq_name or qq_name not in qq_name_dic:continue
        udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name])

        back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)
        print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],back_msg.decode('utf-8')))

udp_client_socket.close()

时间服务器

# _*_coding:utf-8_*_
from socket import *
from time import strftime

ip_port = ('127.0.0.1', 9000)
bufsize = 1024

tcp_server = socket(AF_INET, SOCK_DGRAM)
tcp_server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
tcp_server.bind(ip_port)

while True:
    msg, addr = tcp_server.recvfrom(bufsize)
    print('===>', msg)

    if not msg:
        time_fmt = '%Y-%m-%d %X'
    else:
        time_fmt = msg.decode('utf-8')
    back_msg = strftime(time_fmt)

    tcp_server.sendto(back_msg.encode('utf-8'), addr)

tcp_server.close()
#_*_coding:utf-8_*_
from socket import *
ip_port=('127.0.0.1',9000)
bufsize=1024

tcp_client=socket(AF_INET,SOCK_DGRAM)



while True:
    msg=input('请输入时间格式(例%Y %m %d)>>: ').strip()
    tcp_client.sendto(msg.encode('utf-8'),ip_port)

    data=tcp_client.recv(bufsize)

socket参数的详解

socket.socket(family=AF_INET,type=SOCK_STREAM,proto=0,fileno=None)
建立socket对象的参数说明:
family 地址系列应为AF_INET(默认值),AF_INET6,AF_UNIX,AF_CAN或AF_RDS。
(AF_UNIX 域其实是使用本地 socket 文件来通讯)
type 套接字类型应为SOCK_STREAM(默认值),SOCK_DGRAM,SOCK_RAW或其余SOCK_常量之一。
SOCK_STREAM 是基于TCP的,有保障的(即能保证数据正确传送到对方)面向链接的SOCKET,多用于资料传送。 
SOCK_DGRAM 是基于UDP的,无保障的面向消息的socket,多用于在网络上发广播信息。
proto 协议号一般为零,能够省略,或者在地址族为AF_CAN的状况下,协议应为CAN_RAW或CAN_BCM之一。
fileno 若是指定了fileno,则其余参数将被忽略,致使带有指定文件描述符的套接字返回。
与socket.fromfd()不一样,fileno将返回相同的套接字,而不是重复的。
这可能有助于使用socket.close()关闭一个独立的插座。
 
      

黏包

黏包现象

让咱们基于tcp先制做一个远程执行命令的程序(命令ls -l ; lllllll ; pwd)

res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)

的结果的编码是以当前所在的系统为准的,若是是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端须要用GBK解码

且只能从管道里读一次结果

同时执行多条命令以后,获得的结果极可能只有一部分,在执行其余命令的时候又接收到以前执行的另一部分结果,这种显现就是黏包。

基于tcp协议实现的黏包

tcp - server

*_coding:utf-8_*_ from socket import * import subprocess ip_port=('127.0.0.1',8888) BUFSIZE=1024 tcp_socket_server=socket(AF_INET,SOCK_STREAM) tcp_socket_server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) tcp_socket_server.bind(ip_port) tcp_socket_server.listen(5) while True: conn,addr=tcp_socket_server.accept() print('客户端',addr) while True: cmd=conn.recv(BUFSIZE) if len(cmd) == 0:break res=subprocess.Popen(cmd.decode('utf-8'),shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE) stderr=res.stderr.read() stdout=res.stdout.read() conn.send(stderr) conn.send(stdout)
tcp - client


#_*_coding:utf-8_*_ import socket BUFSIZE=1024 ip_port=('127.0.0.1',8888) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex(ip_port) while True: msg=input('>>: ').strip() if len(msg) == 0:continue if msg == 'quit':break s.send(msg.encode('utf-8')) act_res=s.recv(BUFSIZE) print(act_res.decode('utf-8'),end='')

基于udp协议实现的黏包

udp - server
#_*_coding:utf-8_*_
from socket import *
import subprocess

ip_port=('127.0.0.1',9000)
bufsize=1024

udp_server=socket(AF_INET,SOCK_DGRAM)
udp_server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
udp_server.bind(ip_port)

while True:
    #收消息
    cmd,addr=udp_server.recvfrom(bufsize)
    print('用户命令----->',cmd)

    #逻辑处理
    res=subprocess.Popen(cmd.decode('utf-8'),shell=True,stderr=subprocess.PIPE,stdin=subprocess.PIPE,stdout=subprocess.PIPE)
    stderr=res.stderr.read()
    stdout=res.stdout.read()

    #发消息
    udp_server.sendto(stderr,addr)
    udp_server.sendto(stdout,addr)
udp_server.close()
udp - client
from socket import *
ip_port=('127.0.0.1',9000)
bufsize=1024

udp_client=socket(AF_INET,SOCK_DGRAM)


while True:
    msg=input('>>: ').strip()
    udp_client.sendto(msg.encode('utf-8'),ip_port)
    err,addr=udp_client.recvfrom(bufsize)
    out,addr=udp_client.recvfrom(bufsize)
    if err:
        print('error : %s'%err.decode('utf-8'),end='')
    if out:
        print(out.decode('utf-8'), end='')

注意:只有TCP有粘包现象,UDP永远不会粘包

黏包成因

TCP协议中的数据传递

tcp协议的拆包机制

当发送端缓冲区的长度大于网卡的MTU时,tcp会将此次发送的数据拆成几个数据包发送出去。 
MTU是Maximum Transmission Unit的缩写。意思是网络上传送的最大数据包。MTU的单位是字节。 大部分网络设备的MTU都是1500。若是本机的MTU比网关的MTU大,大的数据包就会被拆开来传送,这样会产生不少数据包碎片,增长丢包率,下降网络速度。

面向流的通讯特色和Nagle算法

TCP(transport control protocol,传输控制协议)是面向链接的,面向流的,提供高可靠性服务。
收发两端(客户端和服务器端)都要有一一成对的socket,所以,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将屡次间隔较小且数据量小的数据,合并成一个大的数据块,而后进行封包。
这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通讯是无消息保护边界的。 
对于空消息:tcp是基于数据流的,因而收发的消息不能为空,这就须要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即使是你输入的是空内容(直接回车),也能够被发送,udp协议会帮你封装上消息头发送过去。 
可靠黏包的tcp协议:tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端老是在收到ack时才会清除缓冲区内容。数据是可靠的,可是会粘包。

 基于tcp协议特色的黏包现象成因 

socket数据传输过程当中的用户态与内核态说明
发送端能够是一K一K地发送数据,而接收端的应用程序能够两K两K地提走数据,固然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据。
也就是说,应用程序所看到的数据是一个总体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,所以TCP协议是面向流的协议,这也是容易出现粘包问题的缘由。
而UDP是面向消息的协议,每一个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不一样的。
怎样定义消息呢?能够认为对方一次性write/send的数据为一个消息,须要明白的是当对方send一条信息的时候,不管底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈如今内核缓冲区。

例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束

此外,发送方引发的粘包是由TCP协议自己形成的,TCP为提升传输效率,发送方每每要收集到足够多的数据后才发送一个TCP段。若连续几回须要send的数据都不多,一般TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。

UDP不会发生黏包

UDP(user datagram protocol,用户数据报协议)是无链接的,面向消息的,提供高效率服务。 
不会使用块的合并优化算法,, 因为UDP支持的是一对多的模式,因此接收端的skbuff(套接字缓冲区)采用了链式结构来记录每个到达的UDP包,在每一个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来讲,就容易进行区分处理了。 即面向消息的通讯是有消息保护边界的。 
对于空消息:tcp是基于数据流的,因而收发的消息不能为空,这就须要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即使是你输入的是空内容(直接回车),也能够被发送,udp协议会帮你封装上消息头发送过去。 
不可靠不黏包的udp协议:udp的recvfrom是阻塞的,一个recvfrom(x)必须对惟一一个sendinto(y),收完了x个字节的数据就算完成,如果y;x数据就丢失,这意味着udp根本不会粘包,可是会丢数据,不可靠。

补充说明:

udp和tcp一次发送数据长度的限制
    用UDP协议发送时,用sendto函数最大能发送数据的长度为:65535- IP头(20) – UDP头(8)=65507字节。用sendto函数发送数据时,若是发送数据长度大于该值,则函数会返回错误。(丢弃这个包,不进行发送) 

    用TCP协议发送时,因为TCP是数据流协议,所以不存在包大小的限制(暂不考虑缓冲区的大小),这是指在用send函数时,数据长度参数不受限制。而实际上,所指定的这段数据并不必定会一次性发送出去,若是这段数据比较长,会被分段发送,若是比较短,可能会等待和下一次数据一块儿发送。

会发生黏包的两种状况

状况一 发送方的缓存机制

发送端须要等缓冲区满才发送出去,形成粘包(发送数据时间间隔很短,数据了很小,会合到一块儿,产生粘包)

服务端
#_*_coding:utf-8_*_
from socket import *
ip_port=('127.0.0.1',8080)

tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5)


conn,addr=tcp_socket_server.accept()


data1=conn.recv(10)
data2=conn.recv(10)

print('----->',data1.decode('utf-8'))
print('----->',data2.decode('utf-8'))

conn.close()
客户端
#_*_coding:utf-8_*_
import socket
BUFSIZE=1024
ip_port=('127.0.0.1',8080)

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port)


s.send('hello'.encode('utf-8'))
s.send('egg'.encode('utf-8'))

状况二 接收方的缓存机制

接收方不及时接收缓冲区的包,形成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候仍是从缓冲区拿上次遗留的数据,产生粘包) 

服务端
#_*_coding:utf-8_*_
from socket import *
ip_port=('127.0.0.1',8080)

tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5)


conn,addr=tcp_socket_server.accept()


data1=conn.recv(2) #一次没有收完整
data2=conn.recv(10)#下次收的时候,会先取旧的数据,而后取新的

print('----->',data1.decode('utf-8'))
print('----->',data2.decode('utf-8'))

conn.close()
客户端
#_*_coding:utf-8_*_
import socket
BUFSIZE=1024
ip_port=('127.0.0.1',8080)

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port)


s.send('hello egg'.encode('utf-8'))

 

总结

黏包现象只发生在tcp协议中:

1.从表面上看,黏包问题主要是由于发送方和接收方的缓存机制、tcp协议面向流通讯的特色。

2.实际上,主要仍是由于接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所形成的

 

黏包的解决方案

解决方案一

问题的根源在于,接收端不知道发送端将要传送的字节流的长度,因此解决粘包的方法就是围绕,如何让发送端在发送数据前,把本身将要发送的字节流总大小让接收端知晓,而后接收端来一个死循环接收完全部数据。

 

服务端
#_*_coding:utf-8_*_
import socket,subprocess
ip_port=('127.0.0.1',8080)
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind(ip_port)
s.listen(5)

while True:
    conn,addr=s.accept()
    print('客户端',addr)
    while True:
        msg=conn.recv(1024)
        if not msg:break
        res=subprocess.Popen(msg.decode('utf-8'),shell=True,\
                            stdin=subprocess.PIPE,\
                         stderr=subprocess.PIPE,\
                         stdout=subprocess.PIPE)
        err=res.stderr.read()
        if err:
            ret=err
        else:
            ret=res.stdout.read()
        data_length=len(ret)
        conn.send(str(data_length).encode('utf-8'))
        data=conn.recv(1024).decode('utf-8')
        if data == 'recv_ready':
            conn.sendall(ret)
    conn.close()
客户端
#_*_coding:utf-8_*_
import socket,time
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(('127.0.0.1',8080))

while True:
    msg=input('>>: ').strip()
    if len(msg) == 0:continue
    if msg == 'quit':break

    s.send(msg.encode('utf-8'))
    length=int(s.recv(1024).decode('utf-8'))
    s.send('recv_ready'.encode('utf-8'))
    send_size=0
    recv_size=0
    data=b''
    while recv_size < length:
        data+=s.recv(1024)
        recv_size+=len(data)


    print(data.decode('utf-8'))
存在的问题:
程序的运行速度远快于网络传输速度,因此在发送一段字节前,先用send去发送该字节流长度,这种方式会放大网络延迟带来的性能损耗

 

解决方案进阶

刚刚的方法,问题在于咱们咱们在发送

咱们能够借助一个模块,这个模块能够把要发送的数据长度转换成固定长度的字节。这样客户端每次接收消息以前只要先接受这个固定长度字节的内容看一看接下来要接收的信息大小,那么最终接受的数据只要达到这个值就中止,就能恰好很少很多的接收完整的数据了。

struct模块

该模块能够把一个类型,如数字,转成固定长度的bytes

>>> struct.pack('i',1111111111111)

struct.error: 'i' format requires -2147483648 <= number <= 2147483647 #这个是范围

import json,struct
#假设经过客户端上传1T:1073741824000的文件a.txt

#为避免粘包,必须自定制报头
header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值

#为了该报头能传送,须要序列化而且转为bytes
head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输

#为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节
head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度

#客户端开始发送
conn.send(head_len_bytes) #先发报头的长度,4个bytes
conn.send(head_bytes) #再发报头的字节格式
conn.sendall(文件内容) #而后发真实内容的字节格式

#服务端开始接收
head_len_bytes=s.recv(4) #先收报头4个bytes,获得报头长度的字节格式
x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度

head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式
header=json.loads(json.dumps(header)) #提取报头

#最后根据报头的内容提取真实的数据,好比
real_data_len=s.recv(header['file_size'])
s.recv(real_data_len)
关于struct的详细用法
#_*_coding:utf-8_*_
#http://www.cnblogs.com/coser/archive/2011/12/17/2291160.html
__author__ = 'Linhaifeng'
import struct
import binascii
import ctypes

values1 = (1, 'abc'.encode('utf-8'), 2.7)
values2 = ('defg'.encode('utf-8'),101)
s1 = struct.Struct('I3sf')
s2 = struct.Struct('4sI')

print(s1.size,s2.size)
prebuffer=ctypes.create_string_buffer(s1.size+s2.size)
print('Before : ',binascii.hexlify(prebuffer))
# t=binascii.hexlify('asdfaf'.encode('utf-8'))
# print(t)


s1.pack_into(prebuffer,0,*values1)
s2.pack_into(prebuffer,s1.size,*values2)

print('After pack',binascii.hexlify(prebuffer))
print(s1.unpack_from(prebuffer,0))
print(s2.unpack_from(prebuffer,s1.size))

s3=struct.Struct('ii')
s3.pack_into(prebuffer,0,123,123)
print('After pack',binascii.hexlify(prebuffer))
print(s3.unpack_from(prebuffer,0))

使用struct解决黏包 

借助struct模块,咱们知道长度数字能够被转换成一个标准大小的4字节数字。所以能够利用这个特色来预先发送数据长度。

发送时 接收时
先发送struct转换好的数据长度4字节 先接受4个字节使用struct转换成数字来获取要接收的数据长度
再发送数据 再按照长度接收数据
服务端(自定制报头)
import socket,struct,json
import subprocess
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #就是它,在bind前加

phone.bind(('127.0.0.1',8080))

phone.listen(5)

while True:
    conn,addr=phone.accept()
    while True:
        cmd=conn.recv(1024)
        if not cmd:break
        print('cmd: %s' %cmd)

        res=subprocess.Popen(cmd.decode('utf-8'),
                             shell=True,
                             stdout=subprocess.PIPE,
                             stderr=subprocess.PIPE)
        err=res.stderr.read()
        print(err)
        if err:
            back_msg=err
        else:
            back_msg=res.stdout.read()


        conn.send(struct.pack('i',len(back_msg))) #先发back_msg的长度
        conn.sendall(back_msg) #在发真实的内容

    conn.close()
客户端(自定制报头)
#_*_coding:utf-8_*_
import socket,time,struct

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(('127.0.0.1',8080))

while True:
    msg=input('>>: ').strip()
    if len(msg) == 0:continue
    if msg == 'quit':break

    s.send(msg.encode('utf-8'))



    l=s.recv(4)
    x=struct.unpack('i',l)[0]
    print(type(x),x)
    # print(struct.unpack('I',l))
    r_s=0
    data=b''
    while r_s < x:
        r_d=s.recv(1024)
        data+=r_d
        r_s+=len(r_d)

    # print(data.decode('utf-8'))
    print(data.decode('gbk')) #windows默认gbk编码

 

咱们还能够把报头作成字典,字典里包含将要发送的真实数据的详细信息,而后json序列化,而后用struck将序列化后的数据长度打包成4个字节(4个本身足够用了)

发送时 接收时

先发报头长度

先收报头长度,用struct取出来
再编码报头内容而后发送 根据取出的长度收取报头内容,而后解码,反序列化
最后发真实内容 从反序列化的结果中取出待取数据的详细信息,而后去取真实的数据内容
服务端:定制稍微复杂一点的报头
import socket,struct,json
import subprocess
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #就是它,在bind前加

phone.bind(('127.0.0.1',8080))

phone.listen(5)

while True:
    conn,addr=phone.accept()
    while True:
        cmd=conn.recv(1024)
        if not cmd:break
        print('cmd: %s' %cmd)

        res=subprocess.Popen(cmd.decode('utf-8'),
                             shell=True,
                             stdout=subprocess.PIPE,
                             stderr=subprocess.PIPE)
        err=res.stderr.read()
        print(err)
        if err:
            back_msg=err
        else:
            back_msg=res.stdout.read()

        headers={'data_size':len(back_msg)}
        head_json=json.dumps(headers)
        head_json_bytes=bytes(head_json,encoding='utf-8')

        conn.send(struct.pack('i',len(head_json_bytes))) #先发报头的长度
        conn.send(head_json_bytes) #再发报头
        conn.sendall(back_msg) #在发真实的内容

    conn.close()
客户端
from socket import *
import struct,json

ip_port=('127.0.0.1',8080)
client=socket(AF_INET,SOCK_STREAM)
client.connect(ip_port)

while True:
    cmd=input('>>: ')
    if not cmd:continue
    client.send(bytes(cmd,encoding='utf-8'))

    head=client.recv(4)
    head_json_len=struct.unpack('i',head)[0]
    head_json=json.loads(client.recv(head_json_len).decode('utf-8'))
    data_len=head_json['data_size']

    recv_size=0
    recv_data=b''
    while recv_size < data_len:
        recv_data+=client.recv(1024)
        recv_size+=len(recv_data)

    print(recv_data.decode('utf-8'))
    #print(recv_data.decode('gbk')) #windows默认gbk编码

 

FTP做业:上传下载文件

 

服务端

import socket
import struct
import json
import subprocess
import os

class MYTCPServer:
address_family = socket.AF_INET

socket_type = socket.SOCK_STREAM

allow_reuse_address = False

max_packet_size = 8192

coding='utf-8'

request_queue_size = 5

server_dir='file_upload'

def __init__(self, server_address, bind_and_activate=True):
"""Constructor. May be extended, do not override."""
self.server_address=server_address
self.socket = socket.socket(self.address_family,
self.socket_type)
if bind_and_activate:
try:
self.server_bind()
self.server_activate()
except:
self.server_close()
raise

def server_bind(self):
"""Called by constructor to bind the socket.
"""
if self.allow_reuse_address:
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.bind(self.server_address)
self.server_address = self.socket.getsockname()

def server_activate(self):
"""Called by constructor to activate the server.
"""
self.socket.listen(self.request_queue_size)

def server_close(self):
"""Called to clean-up the server.
"""
self.socket.close()

def get_request(self):
"""Get the request and client address from the socket.
"""
return self.socket.accept()

def close_request(self, request):
"""Called to clean up an individual request."""
request.close()

def run(self):
while True:
self.conn,self.client_addr=self.get_request()
print('from client ',self.client_addr)
while True:
try:
head_struct = self.conn.recv(4)
if not head_struct:break

head_len = struct.unpack('i', head_struct)[0]
head_json = self.conn.recv(head_len).decode(self.coding)
head_dic = json.loads(head_json)

print(head_dic)
#head_dic={'cmd':'put','filename':'a.txt','filesize':123123}
cmd=head_dic['cmd']
if hasattr(self,cmd):
func=getattr(self,cmd)
func(head_dic)
except Exception:
break

def put(self,args):
file_path=os.path.normpath(os.path.join(
self.server_dir,
args['filename']
))

filesize=args['filesize']
recv_size=0
print('----->',file_path)
with open(file_path,'wb') as f:
while recv_size < filesize:
recv_data=self.conn.recv(self.max_packet_size)
f.write(recv_data)
recv_size+=len(recv_data)
print('recvsize:%s filesize:%s' %(recv_size,filesize))


tcpserver1=MYTCPServer(('127.0.0.1',8080))

tcpserver1.run()

 

 


#下列代码与本题无关
class MYUDPServer:

"""UDP server class."""
address_family = socket.AF_INET

socket_type = socket.SOCK_DGRAM

allow_reuse_address = False

max_packet_size = 8192

coding='utf-8'

def get_request(self):
data, client_addr = self.socket.recvfrom(self.max_packet_size)
return (data, self.socket), client_addr

def server_activate(self):
# No need to call listen() for UDP.
pass

def shutdown_request(self, request):
# No need to shutdown anything.
self.close_request(request)

def close_request(self, request):
# No need to close anything.
pass

客户端
import socket
import struct
import json
import os



class MYTCPClient:
    address_family = socket.AF_INET

    socket_type = socket.SOCK_STREAM

    allow_reuse_address = False

    max_packet_size = 8192

    coding='utf-8'

    request_queue_size = 5

    def __init__(self, server_address, connect=True):
        self.server_address=server_address
        self.socket = socket.socket(self.address_family,
                                    self.socket_type)
        if connect:
            try:
                self.client_connect()
            except:
                self.client_close()
                raise

    def client_connect(self):
        self.socket.connect(self.server_address)

    def client_close(self):
        self.socket.close()

    def run(self):
        while True:
            inp=input(">>: ").strip()
            if not inp:continue
            l=inp.split()
            cmd=l[0]
            if hasattr(self,cmd):
                func=getattr(self,cmd)
                func(l)


    def put(self,args):
        cmd=args[0]
        filename=args[1]
        if not os.path.isfile(filename):
            print('file:%s is not exists' %filename)
            return
        else:
            filesize=os.path.getsize(filename)

        head_dic={'cmd':cmd,'filename':os.path.basename(filename),'filesize':filesize}
        print(head_dic)
        head_json=json.dumps(head_dic)
        head_json_bytes=bytes(head_json,encoding=self.coding)

        head_struct=struct.pack('i',len(head_json_bytes))
        self.socket.send(head_struct)
        self.socket.send(head_json_bytes)
        send_size=0
        with open(filename,'rb') as f:
            for line in f:
                self.socket.send(line)
                send_size+=len(line)
                print(send_size)
            else:
                print('upload successful')




client=MYTCPClient(('127.0.0.1',8080))

client.run()

六.socket的更多方法介绍

更多方法
服务端套接字函数
s.bind()    绑定(主机,端口号)到套接字
s.listen()  开始TCP监听
s.accept()  被动接受TCP客户的链接,(阻塞式)等待链接的到来

客户端套接字函数
s.connect()     主动初始化TCP服务器链接
s.connect_ex()  connect()函数的扩展版本,出错时返回出错码,而不是抛出异常

公共用途的套接字函数
s.recv()            接收TCP数据
s.send()            发送TCP数据
s.sendall()         发送TCP数据
s.recvfrom()        接收UDP数据
s.sendto()          发送UDP数据
s.getpeername()     链接到当前套接字的远端的地址
s.getsockname()     当前套接字的地址
s.getsockopt()      返回指定套接字的参数
s.setsockopt()      设置指定套接字的参数
s.close()           关闭套接字

面向锁的套接字方法
s.setblocking()     设置套接字的阻塞与非阻塞模式
s.settimeout()      设置阻塞套接字操做的超时时间
s.gettimeout()      获得阻塞套接字操做的超时时间

面向文件的套接字的函数
s.fileno()          套接字的文件描述符
s.makefile()        建立一个与该套接字相关的文件
send和sendall方法
官方文档对socket模块下的socket.send()和socket.sendall()解释以下:

socket.send(string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the same meaning as for recv() above. Returns the number of bytes sent. Applications are responsible for checking that all data has been sent; if only some of the data was transmitted, the application needs to attempt delivery of the remaining data.

send()的返回值是发送的字节数量,这个数量值可能小于要发送的string的字节数,也就是说可能没法发送string中全部的数据。若是有错误则会抛出异常。

–

socket.sendall(string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the same meaning as for recv() above. Unlike send(), this method continues to send data from string until either all data has been sent or an error occurs. None is returned on success. On error, an exception is raised, and there is no way to determine how much data, if any, was successfully sent.

尝试发送string的全部数据,成功则返回None,失败则抛出异常。

故,下面两段代码是等价的:

#sock.sendall('Hello world\n')

#buffer = 'Hello world\n'
#while buffer:
#    bytes = sock.send(buffer)
#    buffer = buffer[bytes:]

 

七.验证客户端连接的合法性

若是你想在分布式系统中实现一个简单的客户端连接认证功能,又不像SSL那么复杂,那么利用hmac+加盐的方式来实现

服务端

#_*_coding:utf-8_*_
from socket import *
import hmac,os

secret_key=b'linhaifeng bang bang bang'
def conn_auth(conn):
'''
认证客户端连接
:param conn:
:return:
'''
print('开始验证新连接的合法性')
msg=os.urandom(32)
conn.sendall(msg)
h=hmac.new(secret_key,msg)
digest=h.digest()
respone=conn.recv(len(digest))
return hmac.compare_digest(respone,digest)

def data_handler(conn,bufsize=1024):
if not conn_auth(conn):
print('该连接不合法,关闭')
conn.close()
return
print('连接合法,开始通讯')
while True:
data=conn.recv(bufsize)
if not data:break
conn.sendall(data.upper())

def server_handler(ip_port,bufsize,backlog=5):
'''
只处理连接
:param ip_port:
:return:
'''
tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(backlog)
while True:
conn,addr=tcp_socket_server.accept()
print('新链接[%s:%s]' %(addr[0],addr[1]))
data_handler(conn,bufsize)

if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
server_handler(ip_port,bufsize)

服务端

客户端(合法)

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
from socket import *
import hmac,os

secret_key=b'linhaifeng bang bang bang'
def conn_auth(conn):
'''
验证客户端到服务器的连接
:param conn:
:return:
'''
msg=conn.recv(32)
h=hmac.new(secret_key,msg)
digest=h.digest()
conn.sendall(digest)

def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port)

conn_auth(tcp_socket_client)

while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break

tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close()

if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端(合法)

客户端(非法:不知道加密方式)

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
from socket import *

def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port)

while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break

tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close()

if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端(非法:不知道加密方式)

客户端(非法:不知道secret_key) 

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
from socket import *
import hmac,os

secret_key=b'linhaifeng bang bang bang1111'
def conn_auth(conn):
'''
验证客户端到服务器的连接
:param conn:
:return:
'''
msg=conn.recv(32)
h=hmac.new(secret_key,msg)
digest=h.digest()
conn.sendall(digest)

def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port)

conn_auth(tcp_socket_client)

while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break

tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close()

if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端(非法:不知道secret_key)

八.socketserver

解读socketserver源码 —— http://www.cnblogs.com/Eva-J/p/5081851.html 

server端

import socketserver
class Myserver(socketserver.BaseRequestHandler):
def handle(self):
self.data = self.request.recv(1024).strip()
print("{} wrote:".format(self.client_address[0]))
print(self.data)
self.request.sendall(self.data.upper())

if __name__ == "__main__":
HOST, PORT = "127.0.0.1", 9999

# 设置allow_reuse_address容许服务器重用地址
socketserver.TCPServer.allow_reuse_address = True
# 建立一个server, 将服务地址绑定到127.0.0.1:9999
server = socketserver.TCPServer((HOST, PORT),Myserver)
# 让server永远运行下去,除非强制中止程序
server.serve_forever()

server端

client

import socket

HOST, PORT = "127.0.0.1", 9999
data = "hello"

# 建立一个socket连接,SOCK_STREAM表明使用TCP协议
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
sock.connect((HOST, PORT)) # 连接到客户端
sock.sendall(bytes(data + "\n", "utf-8")) # 向服务端发送数据
received = str(sock.recv(1024), "utf-8")# 从服务端接收数据

print("Sent: {}".format(data))
print("Received: {}".format(received))

client

相关文章
相关标签/搜索