如何使用Supervisor
在不使用Supervisor的时候,咱们的代码常常是这么组织的session
variables ... ops ... summary_op ... merge_all_summarie saver init_op with tf.Session() as sess: writer = tf.tf.train.SummaryWriter() sess.run(init) saver.restore() for ...: train merged_summary = sess.run(merge_all_summarie) writer.add_summary(merged_summary,i) saver.save
下面介绍如何用Supervisor来改写上面程序spa
import tensorflow as tf a = tf.Variable(1) b = tf.Variable(2) c = tf.add(a,b) update = tf.assign(a,c) tf.scalar_summary("a",a) init_op = tf.initialize_all_variables() merged_summary_op = tf.merge_all_summaries() sv = tf.train.Supervisor(logdir="/home/keith/tmp/",init_op=init_op) #logdir用来保存checkpoint和summary saver=sv.saver #建立saver with sv.managed_session() as sess: #会自动去logdir中去找checkpoint,若是没有的话,自动执行初始化 for i in xrange(1000): update_ = sess.run(update) print update_ if i % 10 == 0: merged_summary = sess.run(merged_summary_op) sv.summary_computed(sess, merged_summary,global_step=i) if i%100 == 0: saver.save(sess,logdir="/home/keith/tmp/",global_step=i)
总结
从上面代码能够看出,Supervisor帮助咱们处理一些事情
(1)自动去checkpoint加载数据或初始化数据
(2)自身有一个Saver,能够用来保存checkpoint
(3)有一个summary_computed用来保存Summary
因此,咱们就不须要:
(1)手动初始化或从checkpoint中加载数据
(2)不须要建立Saver,使用sv内部的就能够
(3)不须要建立summary writer
scala