题意:
有\(n\)条线段,区间为\([l_i, r_i]\),每次询问\([x_i, y_i]\),问要被覆盖最少要用多少条线段。c++
思路:
\(f[i][j]\)表示以\(i\)为左端点,用了\(2^j\)条线段,最远到哪里。
而后从大到小贪心便可,相似于倍增找LCA的过程。spa
代码:code
#include <bits/stdc++.h> using namespace std; #define N 200010 #define M 500010 #define D 20 int n, q; int l[N], r[N]; int f[M][D]; int work(int x, int y) { int ans = 0; for (int i = D - 1; i >= 0; --i) { if (f[x][i] < y) { x = f[x][i]; ans |= (1 << i); } } x = f[x][0]; ++ans; if (x < y) ans = -1; return ans; } int main() { while (scanf("%d%d", &n, &q) != EOF) { for (int i = 1; i <= n; ++i) { scanf("%d%d", l + i, r + i); ++l[i], ++r[i]; } memset(f, 0, sizeof f); for (int i = 1; i <= n; ++i) { f[l[i]][0] = max(f[l[i]][0], r[i]); } for (int i = 1; i < M; ++i) { f[i][0] = max(f[i][0], max(i, f[i - 1][0])); for (int j = 1; j < D; ++j) { f[i][j] = max(f[i][j], max(f[i][j - 1], f[i - 1][j])); } } for (int j = 1; j < D; ++j) { for (int i = 1; i < M; ++i) { f[i][j] = max(f[i][j], f[f[i][j - 1]][j - 1]); } } int x, y; while (q--) { scanf("%d%d", &x, &y); ++x, ++y; printf("%d\n", work(x, y)); } } return 0; }