MapReduce阶段基础知识(详细)

目录


什么是计算框架?

是指实现某项任务或某项工作从开始到结束的计算过程或流的结构。用于去解决或者处理某个复杂的计算问题。

什么是并行计算框架?

是指为更快的计算某项任务或某项工作,将计算程序分发到多台服务器上,使每个服务器计算总任务的一部分,多台服务器同时计算的框架。

 

什么是分布式计算?

分布式计算:是一种计算方法,是将该应用分解成许多小的部分,分配给多台计算机进行处理。这样可以节约整体计算时间,大大提高计算效率。

MapReduce核心思想

MapReduce的思想核心是“分而治之,先分后合”。即将一个大的、复杂的工作或任务,拆分成多个小的任务,并行处理,最终进行合并。适用于大量复杂的、时效性不高的任务处理场景(大规模离线数据处理场景)。即使是发布过论文实现分布式计算的谷歌也只是实现了这种思想,而不是自己原创。

 

MapReduce并行计算

HDFS存储数据时对大于128M的数据会进行数据切分,每128M一个数据块,数据块会分散、分布存储到HDFS。

MapReduce在进行计算前会复制计算程序,每个数据块会分配一个独立的计算程序副本(MapTack)。计算时多个数据块几乎同时被读取并计算,但是计算程序完全相同。最终将各个计算程序计算的结果进行汇总(Reduce来汇总)

MapReduce设计构思

 MapReduce是一个分布式运算程序的编程框架,核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在Hadoop集群上。

既然是做计算的框架,那么表现形式就是有个输入(input),MapReduce操作这个输入(input),通过本身定义好的计算模型,得到一个输出(output)。

Hadoop MapReduce构思体现在如下的三个方面:

  • 如何应对大数据处理:分而治之

对相互间不具有计算依赖关系的大数据,实现并行最自然的办法就是采取分而治之的策略。并行计算的第一个重要问题是如何划分计算任务或者计算数据以便对划分的子任务或数据块同时进行计算。不可分拆的计算任务或相互间有依赖关系的数据无法进行并行计算!

  •  构建抽象模型:Map和Reduce

 MapReduce借鉴了函数式语言中的思想,用Map和Reduce两个函数提供了高层的并行编程抽象模型。

Map: 对一组数据元素进行某种重复式的处理;

Reduce: 对Map的中间结果进行某种进一步的结果整理。

MapReduce中定义了如下的Map和Reduce两个抽象的编程接口,由用户去编程实现:

map: [k1,v1] → [(k2,v2)]

reduce: [k2, {v2,…}] → [k3, v3]

 WordCount体现每个KeyValue

Map和Reduce为程序员提供了一个清晰的操作接口抽象描述。通过以上两个编程接口,大家可以看出MapReduce处理的数据类型是<key,value>键值对

  • 统一构架,隐藏系统层细节

 如何提供统一的计算框架,如果没有统一封装底层细节,那么程序员则需要考虑诸如数据存储、划分、分发、结果收集、错误恢复等诸多细节;为此,MapReduce设计并提供了统一的计算框架,为程序员隐藏了绝大多数系统层面的处理细节。

MapReduce最大的亮点在于通过抽象模型和计算框架把需要做什么(what need to do)与具体怎么做(how to do)分开了,为程序员提供一个抽象和高层的编程接口和框架。程序员仅需要关心其应用层的具体计算问题,仅需编写少量的处理应用本身计算问题的程序代码。如何具体完成这个并行计算任务所相关的诸多系统层细节被隐藏起来,交给计算框架去处理:从分布代码的执行,到大到数千小到单个节点集群的自动调度使用。

 

MapReduce的combiner

每一个 map 都可能会产生大量的本地输出,Combiner 的作用就是对 map 端的输出先做一次合并,以减少在 map 和 reduce 节点之间的数据传输量,以提高网络IO 性能,是 MapReduce 的一种优化手段之一。

       combiner 是 MR 程序中 Mapper 和 Reducer 之外的一种组件

       combiner 组件的父类就是 Reducer

       combiner 和 reducer 的区别在于运行的位置:

Combiner 是在每一个 maptask 所在的节点运行 Reducer 是接收全局所有 Mapper 的输出结果;

       combiner 的意义就是对每一个 maptask 的输出进行局部汇总,以减小网络传输量

       未使用combiner的网络开销

使用combiner的网络开销

具体实现步骤:

1、自定义一个 combiner 继承 Reducer,重写 reduce 方法

2、在 job 中设置:  job.setCombinerClass(CustomCombiner.class)

 

combiner 能够应用的前提是不能影响最终的业务逻辑,而且,combiner 的输出 kv 应该跟 reducer 的输入 kv 类型要对应起来

 

 MapTask运行机制详解以及Map任务的并行度

整个Map阶段流程大体如上图所示。简单概述:inputFile通过split被逻辑切分为多个split文件,通过Record按行读取内容给map(用户自己实现的)进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候需要将缓冲区的数据以一个临时文件的方式存放到磁盘,当整个map task结束后再对磁盘中这个map task产生的所有临时文件做合并,生成最终的正式输出文件,然后等待reduce task来拉数据。

详细步骤:

 1、首先,读取数据组件InputFormat(默认TextInputFormat)会通过getSplits方法对输入目录中文件进行逻辑切片规划得到splits,有多少个split就对应启动多少个MapTask。默认情况下split与block的对应关系默认是一对一。

2、将输入文件切分为splits之后,由RecordReader对象(默认LineRecordReader)进行读取,以\n作为分隔符,读取一行数据,返回<key,value>。Key表示每行首字符偏移值,value表示这一行文本内容。

3、读取split返回<key,value>,进入用户自己继承的Mapper类中,执行用户重写的map函数。RecordReader读取一行用户重写的map调用一次,并输出一个<key,value>。

4、Map输出的数据会写入内存,内存中这片区域叫做环形缓冲区,缓冲区的作用是批量收集map结果,减少磁盘IO的影响。key/value对以及Partition的结果都会被写入缓冲区。当然写入之前,key与value值都会被序列化成字节数组。

环形缓冲区其实是一个数组,数组中存放着key、value的序列化数据和key、value的元数据信息,包括partition、key的起始位置、value的起始位置以及value的长度。环形结构是一个抽象概念。

缓冲区是有大小限制,默认是100MB。当map task的输出结果很多时,就可能会撑爆内存,所以需要在一定条件下将缓冲区中的数据临时写入磁盘,然后重新利用这块缓冲区。这个从内存往磁盘写数据的过程被称为Spill,中文可译为溢写。这个溢写是由单独线程来完成,不影响往缓冲区写map结果的线程。溢写线程启动时不应该阻止map的结果输出,所以整个缓冲区有个溢写的比例spill.percent。这个比例默认是0.8,也就是当缓冲区的数据已经达到阈值(buffer size * spill percent = 100MB * 0.8 = 80MB),溢写线程启动,锁定这80MB的内存,执行溢写过程。Map task的输出结果还可以往剩下的20MB内存中写,互不影响。

5、合并溢写文件:每次溢写会在磁盘上生成一个临时文件(写之前判断是否有combiner),如果map的输出结果真的很大,有多次这样的溢写发生,磁盘上相应的就会有多个临时文件存在。当整个数据处理结束之后开始对磁盘中的临时文件进行merge合并,因为最终的文件只有一个,写入磁盘,并且为这个文件提供了一个索引文件,以记录每个reduce对应数据的偏移量。

至此map整个阶段结束。

mapTask的一些基础设置配置(mapred-site.xml当中社会):

设置一:设置环型缓冲区的内存值大小(默认设置如下)

mapreduce.task.io.sort.mb:100

设置二:设置溢写百分比(默认设置如下)

mapreduce.map.sort.spill.percent:0.80

 设置三:设置溢写数据目录(默认设置)

mapreduce.cluster.local.dir:${hadoop.tmp.dir}/mapred/local

 设置四:设置一次最多合并多少个溢写文件(默认设置如下)

mapreduce.task.io.sort.factor:10

 

ReduceTask 工作机制以及reduceTask的并行度 

Reduce大致分为copy、sort、reduce三个阶段,重点在前两个阶段。copy阶段包含一个eventFetcher来获取已完成的map列表,由Fetcher线程去copy数据,在此过程中会启动两个merge线程,分别为inMemoryMerger和onDiskMerger,分别将内存中的数据merge到磁盘和将磁盘中的数据进行merge。待数据copy完成之后,copy阶段就完成了,开始进行sort阶段,sort阶段主要是执行finalMerge操作,纯粹的sort阶段,完成之后就是reduce阶段,调用用户定义的reduce函数进行处理。

详细步骤:

1Copy阶段,简单地拉取数据。Reduce进程启动一些数据copy线程(Fetcher),通过HTTP方式请求maptask获取属于自己的文件。

2Merge阶段。这里的merge如map端的merge动作,只是数组中存放的是不同map端copy来的数值。Copy过来的数据会先放入内存缓冲区中,这里的缓冲区大小要比map端的更为灵活。merge有三种形式:内存到内存;内存到磁盘;磁盘到磁盘。默认情况下第一种形式不启用。当内存中的数据量到达一定阈值,就启动内存到磁盘的merge。与map 端类似,这也是溢写的过程,这个过程中如果你设置有Combiner,也是会启用的,然后在磁盘中生成了众多的溢写文件。第二种merge方式一直在运行,直到没有map端的数据时才结束,然后启动第三种磁盘到磁盘的merge方式生成最终的文件。

3、合并排序。把分散的数据合并成一个大的数据后,还会再对合并后的数据排序。

4、对排序后的键值对调用reduce方法,键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对,最后把这些输出的键值对写入到HDFS文件中。

 

MapReduce总体工作机制图

 MapReduceshuffle过程

map阶段处理的数据如何传递给reduce阶段,是MapReduce框架中最关键的一个流程,这个流程就叫shuffle。

shuffle: 洗牌、发牌——(核心机制:数据分区,排序,分组,ComBine,合并等过程)。

huffle是Mapreduce的核心,它分布在Mapreduce的map阶段和reduce阶段。一般把从Map产生输出开始到Reduce取得数据作为输入之前的过程称作shuffle。

维度一,流程维度回顾。从Map输出到Reduce输入。

 

维度二,内存维度回顾。从Map输出到Reduce输入

 

 

 

1).Collect阶段:将MapTask的结果输出到默认大小为100M的环形缓冲区,保存的是key/value,Partition分区信息等。

2).Spill阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了combiner,还会将有相同分区号和key的数据进行排序。

3).Merge阶段:把所有溢出的临时文件进行一次合并操作,以确保一个MapTask最终只产生一个中间数据文件。

4).Copy阶段:ReduceTask启动Fetcher线程到已经完成MapTask的节点上复制一份属于自己的数据,这些数据默认会保存在内存的缓冲区中,当内存的缓冲区达到一定的阀值的时候,就会将数据写到磁盘之上。

5).Merge阶段:在ReduceTask远程复制数据的同时,会在后台开启两个线程对内存到本地的数据文件进行合并操作。

6).Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask阶段已经对数据进行了局部的排序,ReduceTask只需保证Copy的数据的最终整体有效性即可。

Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快

缓冲区的大小可以通过参数调整,  参数:mapreduce.task.io.sort.mb  默认100M

 

Mapreduce的其他补充 

1、 多job串联

一个稍复杂点的处理逻辑往往需要多个mapreduce程序串联处理,多job的串联可以借助mapreduce框架的JobControl实现

ControlledJob cJob1 = new ControlledJob(job1.getConfiguration());

        ControlledJob cJob2 = new ControlledJob(job2.getConfiguration());

        ControlledJob cJob3 = new ControlledJob(job3.getConfiguration());

        cJob1.setJob(job1);

        cJob2.setJob(job2);

        cJob3.setJob(job3);

        // 设置作业依赖关系

        cJob2.addDependingJob(cJob1);

        cJob3.addDependingJob(cJob2);

        JobControl jobControl = new JobControl("RecommendationJob");

        jobControl.addJob(cJob1);

        jobControl.addJob(cJob2);

        jobControl.addJob(cJob3);

        // 新建一个线程来运行已加入JobControl中的作业,开始进程并等待结束

        Thread jobControlThread = new Thread(jobControl);

        jobControlThread.start();

        while (!jobControl.allFinished()) {

            Thread.sleep(500);

        }

        jobControl.stop();

 

        return 0;

 2、mapreduce资源相关参数优化

以下调整参数都在mapred-site.xml这个配置文件当中有

//以下参数是在用户自己的mr应用程序中配置就可以生效

(1) mapreduce.map.memory.mb: 一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

(2) mapreduce.reduce.memory.mb: 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

(3) mapred.child.java.opts  配置每个map或者reduce使用的内存的大小,默认是200M

 (4) mapreduce.map.cpu.vcores: 每个Map task可使用的最多cpu core数目, 默认值: 1

(5) mapreduce.reduce.cpu.vcores: 每个Reduce task可使用的最多cpu core数目, 默认值: 1

virtual 虚拟的

 

//shuffle性能优化的关键参数,应在yarn启动之前就配置好

(6)mapreduce.task.io.sort.mb   100         //shuffle的环形缓冲区大小,默认100m

(7)mapreduce.map.sort.spill.percent   0.8    //环形缓冲区溢出的阈值,默认80%

 

//应该在yarn启动之前就配置在服务器的配置文件中才能生效

以下配置都在yarn-site.xml配置文件当中配置

(8) yarn.scheduler.minimum-allocation-mb       1024   给应用程序container分配的最小内存

(9) yarn.scheduler.maximum-allocation-mb      8192     给应用程序container分配的最大内存

(10) yarn.scheduler.minimum-allocation-vcores      1       container最小的虚拟内核的个数

(11)yarn.scheduler.maximum-allocation-vcores      32 container最大的虚拟内核的个数

(12)yarn.nodemanager.resource.memory-mb   8192  每个nodemanager给多少内存

3、mapreduce容错相关参数优化

(1) mapreduce.map.maxattempts: 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(2) mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(3) mapreduce.job.maxtaskfailures.per.tracker: 当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业仍认为成功。

 (4) mapreduce.task.timeout: Task超时时间,默认值为600000毫秒,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒)。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

4、mapreduce效率和稳定性相关参数优化

(1) mapreduce.map.speculative: 是否为Map Task打开推测执行机制,默认为true,如果为true,如果Map执行时间比较长,那么集群就会推测这个Map已经卡住了,会重新启动同样的Map进行并行的执行,哪个先执行完了,就采取哪个的结果来作为最终结果,一般直接关闭推测执行

(2) mapreduce.reduce.speculative: 是否为Reduce Task打开推测执行机制,默认为true,如果reduce执行时间比较长,那么集群就会推测这个reduce已经卡住了,会重新启动同样的reduce进行并行的执行,哪个先执行完了,就采取哪个的结果来作为最终结果,一般直接关闭推测执行

 (3) mapreduce.input.fileinputformat.split.minsize: FileInputFormat做切片时的最小切片大小,默认为0

(4)mapreduce.input.fileinputformat.split.maxsize:  FileInputFormat做切片时的最大切片大小(已过时的配置,2.7.5当中直接把这个配置写死了,写成了Integer.maxValue的值)

(切片的默认大小就等于blocksize,即 134217728)