DP————LIS(最长上升子序列)和LCS(最长公共子序列)问题

LIS问题

https://www.acwing.com/problem/content/898/c++

思路:首先数组a中存输入的数(本来的数),开辟一个数组f用来存结果,最终数组f的长度就是最终的答案;假如数组f如今存了数,当到了数组a的第i个位置时,首先判断a[i] > f[cnt] ? 如果大于则直接将这个数添加到数组f中,即f[++cnt] = a[i];这个操做时显然的。
当a[i] <= f[cnt] 的时,咱们就用a[i]去替代数组f中的第一个大于等于a[i]的数,由于在整个过程当中咱们维护的数组f 是一个递增的数组,因此咱们能够用二分查找在 logn 的时间复杂的的状况下直接找到对应的位置,而后替换,即f[l] = a[i]。数组

咱们用a[i]去替代f[i]的含义是:以a[i]为最后一个数的严格单调递增序列,这个序列中数的个数为l个。spa

这样当咱们遍历完整个数组a后就能够获得最终的结果。code

时间复杂度分析:O(nlogn)O(nlogn)
C++ 代码blog

 

#include<bits/stdc++.h>
using namespace std;
int n,a[100001],dp[100001],len;
int main(){
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i];
    dp[1]=a[1],len=1;
    for(int i=2;i<=n;i++){
        if(dp[len]<a[i]) dp[++len]=a[i];

        else{
            int j=lower_bound(dp+1,dp+len+1,a[i])-dp;//lower bound真好用
            dp[j]=a[i];

        }
    }
    cout<<len;
    return 0;
} 

LCS问题

 挺简单的,没什么好说的,看代码应该能够了解。ci

C++ 代码get

 

#include<bits/stdc++.h>
using namespace std;
string a,b;
int dp[2001][2001];
int main(){

    int len1,len2;
    cin>>len1>>len2>>a>>b;
    for(int j=1;j<=len2;j++)
    for(int i=1;i<=len1;i++){
    if(a[i-1]==b[j-1]) dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
    else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);//阶段划分:已经处理的前缀长度 
    }
    cout<<dp[len1][len2];
    return 0;
}
相关文章
相关标签/搜索