机器学习:了解混淆矩阵(Confusion Matrix)

混淆矩阵是数据科学、数据分析和机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型作出的分类判断两个标准进行汇总。 1. 什么是混淆矩阵 混淆矩阵的每一列代表了预测类别 ,每一列的总数表示预测为该类别的数据的数目;每一行代表了数据的真实归属类别 ,每一行的数据总数表示该类别的数据实例的数目。 以二元分类问题为例,数据集存在肯定类别和否定类别两类记录,而分类
相关文章
相关标签/搜索