连接node
发现两个数之间的差会逐渐缩小,因此只要不是三个数都相同,那么log次左右必定会获得答案c++
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define eps 1e-10 #define MAXN 200005 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int64 A,B,C,S; void Solve() { read(A);read(B);read(C); S = A + B + C; int cnt = 0; while(1) { if((A & 1) || (B & 1) || (C & 1)) {out(cnt);enter;return;} if(A == B && B == C) {puts("-1");return;} A = (S - A) / 2; B = (S - B) / 2; C = (S - C) / 2; ++cnt; } } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
直接建一个图出来,求是否每一个联通块存在欧拉回路,只须要判点度就好cookie
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define eps 1e-10 #define MAXN 200005 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N,M; int deg[MAXN]; void Solve() { read(N);read(M); int a,b; for(int i = 1 ; i <= M ; ++i) { read(a);read(b); ++deg[a];++deg[b]; } for(int i = 1 ; i <= N ; ++i) { if(deg[i] & 1) {puts("NO");return;} } puts("YES"); } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
咱们发现进行完第一轮前K次随便走的操做,剩下的就是沿着最短的直线走到某个边上,由于能够用前一轮的破壁和下一轮的走路spa
因此先bfs而后看看能到的全部点离边最少要再走几轮code
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define eps 1e-10 #define MAXN 200005 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int H,W,K; char s[805][805]; bool vis[805][805]; int dis[805][805]; queue<pii > Q; int dx[4] = {1,0,-1,0},dy[4] = {0,1,0,-1}; void Solve() { read(H);read(W);read(K); for(int i = 1 ; i <= H ; ++i) { scanf("%s",s[i] + 1); } for(int i = 1 ; i <= H ; ++i) { for(int j = 1 ; j <= W ; ++j) { if(s[i][j] == 'S') { Q.push(mp(i,j));vis[i][j] = 1; } } } while(!Q.empty()) { pii u = Q.front();Q.pop(); if(dis[u.fi][u.se] == K) continue; for(int k = 0 ; k < 4 ; ++k) { int tx = u.fi + dx[k],ty = u.se + dy[k]; if(s[tx][ty] == '.' && !vis[tx][ty]) { Q.push(mp(tx,ty)); vis[tx][ty] = 1; dis[tx][ty] = dis[u.fi][u.se] + 1; } } } int ans = 1000000000; for(int i = 1 ; i <= H ; ++i) { for(int j = 1 ; j <= W ; ++j) { if(vis[i][j]) { if(i == 1 || j == 1 || i == H || j == W) ans = min(ans,1); else { int t = min(i - 1,j - 1); t = min(t,min(H - i,W - j)); ans = min(ans,1 + (t - 1) / K + 1); } } } } out(ans);enter; } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
dfs,若是一个点是叶子,那么认为这个地方是当这个点的父亲被占后,Aoki的必占点,标成1排序
而后不是叶子的话,数数这个点Aoki的必占点有几个,若是大于等于2个,那么证实先手会赢,若是只有1个,那么这里能够变成Takahashi能够经过必定走法必占的点,若是是0个,则这个点是Aoki必占点队列
若是根节点是Aoki必占点,那么先手必定会赢get
再加上某个点Aoki必占点的儿子大于等于2个状况先手会赢数学
除此以外后手赢hash
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define eps 1e-10 #define MAXN 100005 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N; struct node { int to,next; }E[MAXN * 2]; int head[MAXN],sumE,col[MAXN]; bool flag = 0; void add(int u,int v) { E[++sumE].to = v; E[sumE].next = head[u]; head[u] = sumE; } void dfs(int u,int fa) { int s = 0; for(int i = head[u] ; i ; i = E[i].next) { int v = E[i].to; if(v != fa) { dfs(v,u); s += col[v]; } } if(s == 0) col[u] = 1; if(s >= 2) flag = 1; } void Solve() { read(N); int a,b; for(int i = 1 ; i < N ; ++i) { read(a);read(b); add(a,b);add(b,a); } dfs(1,0); if(col[1] || flag) puts("First"); else puts("Second"); } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
咱们至关于选择一条蓝边和一条红边,断开以后的两边点集是同样的
那么咱们逆着这个操做来,至关于加边,若是一个两个点之间用两条以上的边,那么就合成一个点便可
咱们把符合要求的点扔进一个队列里,而后用一个map维护点对之间的边,给每一个点开一个multiset维护这个点指向的边
启发式合并,复杂度是\(O(n \log^2 n)\)
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define eps 1e-10 #define MAXN 100005 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N; multiset<int> to[MAXN]; map<pii,int> zz; queue<pii > Q; void insertEdge(int a,int b) { if(a == b) return; if(a > b) swap(a,b); zz[mp(a,b)]++; if(zz[mp(a,b)] == 2) Q.push(mp(a,b)); to[a].insert(b);to[b].insert(a); } void Delete(int x,int y) { if(x > y) swap(x,y); if(zz.count(mp(x,y))) zz.erase(mp(x,y)); } void Merge(int x,int y) { for(auto t : to[y]) { Delete(t,y); to[t].erase(to[t].find(y)); insertEdge(t,x); } } void Solve() { read(N); int a,b,c,d; for(int i = 1 ; i < 2 * N - 1 ; ++i) { read(a);read(b); insertEdge(a,b); } for(int i = 1 ; i < N ; ++i) { while(1) { if(Q.empty()) {puts("NO");return;} pii u = Q.front();Q.pop(); if(zz.count(u)) { if(to[u.fi].size() < to[u.se].size()) swap(u.fi,u.se); Merge(u.fi,u.se); break; } } } puts("YES"); } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
又是一道相似数学概括法的题
咱们看到若是删掉了1的排列如何作,若是咱们排序\(2,3,4...N\)用了\(T\)次操做,那么咱们找到\(T - 1\)次操做的时候在\(2,3,4...N\)这堆数最前面的数是\(f\)
若是\(1\)在\(f\)和\(2\)之间,那么证实排列\(1\)到\(N\)用\(T\)次,不然用\(T + 1\)次
首先能够用定义看出\(f \neq 2\),不然\(T\)能够是\(T - 1\)
如何求\(1\)和\(f\)和\(2\)的位置关系呢,咱们先证实以下两个事实
- \(f\)只在排在\(2...N\)最前面的时候才会当高元素,不然都是矮元素
- 第一个元素确定是高元素,考虑一个\(x\)能当高元素且不为第一个,前面确定有一个\(y < x\),那么\(x\)排不到最前面,且\(x\)为矮元素的时候\(y\)也是矮元素,然而\(f\)排在最前面,因此\(f\)当不了中间的高元素
- \(1,2,f\)的循环位置不变,指\((a,b,c),(b,c,a),(c,a,b)\)不变
- 若是\(1\)是第一个数,\(2\)是第二个数,那么\(1\)是高元素,\(2\)是高元素,f是矮元素,顺序变为\(f,1,2\),循环顺序不变
- 若是\(1\)是第一个数,\(2\)不是第二个数,\(1\)是高元素,\(2\)是矮元素,\(f\)是矮元素,顺序变为\(2,f,1\),循环顺序不变
- 若是\(2\)是第一个数,\(2\)是高元素,\(1,f\)是矮元素,循环顺序不变
- 若是\(f\)是第一个数,\(f\)是高元素,\(1,2\)是矮元素,循环顺序不变
- 不然三个都是矮元素,循环顺序不变
由此就能够求出来\(f\)排在最前时,\(f,1,2\)的位置关系
而后边递推边求\(f\)便可
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define eps 1e-10 #define MAXN 300005 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N; int p[MAXN],pos[MAXN]; int pre[MAXN],f[MAXN],ans[MAXN]; void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) { read(p[i]);pos[p[i]] = i; } for(int i = N - 1 ; i >= 1 ; --i) { if(ans[i + 1] == 0) { if(pos[i] < pos[i + 1]) ans[i] = 0; else {ans[i] = 1;f[0] = i + 1;} } else { int t = ans[i + 1] - 1; int a[3] = {i,i + 1,f[t]}; sort(a,a + 3,[](int c,int d){return pos[c] < pos[d];}); while(a[0] != f[t]) { swap(a[2],a[0]);swap(a[1],a[2]); } if(a[1] == i) { ans[i] = ans[i + 1]; } else { ans[i] = ans[i + 1] + 1; f[t + 1] = i + 1; } } } out(ans[1]);enter; } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }