单链表中的每一个结点不只包含值,还包含连接到下一个结点的引用字段
。经过这种方式,单链表将全部结点按顺序组织起来。下面是一个单链表的例子:node
蓝色箭头显示单个连接列表中的结点是如何组合在一块儿的。app
1 // Definition for singly-linked list. 2 struct SinglyListNode { 3 int val; 4 SinglyListNode *next; 5 SinglyListNode(int x) : val(x), next(NULL) {} 6 };
设计链表的实现。您能够选择使用单链表或双链表。单链表中的节点应该具备两个属性:val
和 next
。val
是当前节点的值,next
是指向下一个节点的指针/引用。若是要使用双向链表,则还须要一个属性 prev
以指示链表中的上一个节点。假设链表中的全部节点都是 0-index 的。spa
在链表类中实现这些功能:设计
index
个节点的值。若是索引无效,则返回-1
。val
的节点。插入后,新节点将成为链表的第一个节点。val
的节点追加到链表的最后一个元素。index
个节点以前添加值为 val
的节点。若是 index
等于链表的长度,则该节点将附加到链表的末尾。若是 index
大于链表长度,则不会插入节点。若是index
小于0,则在头部插入节点。index
有效,则删除链表中的第 index
个节点。MyLinkedList linkedList = new MyLinkedList(); linkedList.addAtHead(1); linkedList.addAtTail(3); linkedList.addAtIndex(1,2); //链表变为1-> 2-> 3 linkedList.get(1); //返回2 linkedList.deleteAtIndex(1); //如今链表是1-> 3 linkedList.get(1); //返回3
val
值都在 [1, 1000]
以内。[1, 1000]
以内。1 class MyLinkedList 2 { 3 public: 4 /** Initialize your data structure here. */ 5 MyLinkedList() : head(nullptr) {} 6 7 /** Get the value of the index-th node in the linked list. If the index is invalid, return -1. */ 8 int get(int index) 9 { 10 if (head != nullptr) 11 { 12 Node *now = head; 13 int nownum = 0; 14 while (now->next != nullptr && nownum < index) 15 { 16 now = now->next; 17 nownum++; 18 } 19 if (nownum == index) 20 return now->val; 21 } 22 return -1; 23 } 24 25 /** Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. */ 26 void addAtHead(int val) 27 { 28 Node *temp = new Node(val); 29 temp->next = head; 30 head = temp; 31 } 32 33 /** Append a node of value val to the last element of the linked list. */ 34 void addAtTail(int val) 35 { 36 Node *temp = new Node(val); 37 if (head == nullptr) 38 head = temp; 39 else 40 { 41 Node *now = head; 42 while (now->next != nullptr) 43 now = now->next; 44 now->next = temp; 45 } 46 } 47 48 /** Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. */ 49 void addAtIndex(int index, int val) 50 { 51 Node *temp = new Node(val); 52 if (index <= 0) 53 { 54 temp->next = head; 55 head = temp; 56 } 57 else if (head != nullptr) 58 { 59 Node *pre = head; 60 int prenum = 0; 61 while (pre->next != nullptr && prenum < index - 1) 62 { 63 pre = pre->next; 64 prenum++; 65 } 66 if (prenum == index - 1) 67 { 68 temp->next = pre->next; 69 pre->next = temp; 70 } 71 } 72 } 73 74 /** Delete the index-th node in the linked list, if the index is valid. */ 75 void deleteAtIndex(int index) 76 { 77 if (head != nullptr) 78 { 79 if (index == 0) 80 { 81 Node *temp = head; 82 head = head->next; 83 delete temp; 84 } 85 else 86 { 87 Node *pre = head; 88 int prenum = 0; 89 while (pre->next != nullptr && prenum < index - 1) 90 { 91 pre = pre->next; 92 prenum++; 93 } 94 if (pre->next != nullptr && prenum == index - 1) 95 { 96 Node *temp = pre->next; 97 pre->next = temp->next; 98 delete temp; 99 } 100 } 101 } 102 } 103 104 private: 105 struct Node 106 { 107 int val; 108 struct Node *next; 109 Node(int x) : val(x), next(nullptr) {} 110 }; 111 struct Node *head; 112 }; 113 114 /** 115 * Your MyLinkedList object will be instantiated and called as such: 116 * MyLinkedList* obj = new MyLinkedList(); 117 * int param_1 = obj->get(index); 118 * obj->addAtHead(val); 119 * obj->addAtTail(val); 120 * obj->addAtIndex(index,val); 121 * obj->deleteAtIndex(index); 122 */