快速卷积算法winograd原理推导

最近看到文章中说采用winograd快速卷积算法可以减少神经网络中图像卷积的乘法次数,因为之前做过cnn,当时卷积用的最简单的滑动窗口方式计算卷积,因此对这个快速卷积比较有兴趣,文章中先以一维的为例阐述了winigrad的如下思想: 其中下面的m1、m2、m3、m4的表达式是winograd的一个关键内容,通过这种转换将原本需要6次乘法减少到了4次(当然加法增加了),但是文中没有给出如何推导出的m
相关文章
相关标签/搜索